Home
Class 12
MATHS
Range of f(x)=sin^(-1)x+x^(2)+4x+1 is :...

Range of `f(x)=sin^(-1)x+x^(2)+4x+1` is :

A

`[-(pi)/(2)-2, (pi)/(2)+6]`

B

`[0, (pi)/(2)+6]`

C

`[-(pi)/(2)-2, oo)`

D

`(-3, oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \sin^{-1}(x) + x^2 + 4x + 1 \), we will analyze the components of the function step by step. ### Step 1: Determine the domain of \( \sin^{-1}(x) \) The function \( \sin^{-1}(x) \) is defined for \( x \) in the interval \([-1, 1]\). Therefore, the domain of \( f(x) \) is also \([-1, 1]\). **Hint:** Remember that the inverse sine function has a restricted domain and range. ### Step 2: Find the maximum and minimum values of \( f(x) \) We need to evaluate \( f(x) \) at the endpoints of the interval \([-1, 1]\). 1. **Evaluate at \( x = 1 \)**: \[ f(1) = \sin^{-1}(1) + 1^2 + 4 \cdot 1 + 1 \] \[ = \frac{\pi}{2} + 1 + 4 + 1 = \frac{\pi}{2} + 6 \] 2. **Evaluate at \( x = -1 \)**: \[ f(-1) = \sin^{-1}(-1) + (-1)^2 + 4 \cdot (-1) + 1 \] \[ = -\frac{\pi}{2} + 1 - 4 + 1 = -\frac{\pi}{2} - 2 \] ### Step 3: Determine the range of \( f(x) \) Now that we have the values of \( f(x) \) at the endpoints: - Maximum value at \( x = 1 \): \( \frac{\pi}{2} + 6 \) - Minimum value at \( x = -1 \): \( -\frac{\pi}{2} - 2 \) Thus, the range of \( f(x) \) is: \[ \text{Range of } f(x) = \left[-\frac{\pi}{2} - 2, \frac{\pi}{2} + 6\right] \] ### Final Answer The range of \( f(x) = \sin^{-1}(x) + x^2 + 4x + 1 \) is: \[ \left[-\frac{\pi}{2} - 2, \frac{\pi}{2} + 6\right] \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

Range of f(x)=sin^(- 1)x+sec^(- 1)x is

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

Find the range of f(x) = sin^(-1) x + tan^(-1) x + cos^(-1) x

Range of f(x) =sin^-1(sqrt(x^2+x+1)) is

Range of f(x) = (1)/(2x-1) is

Range of f(x)=sin^(-1)[x-1]+2cos^(-1)[x-2] ([.] denotes greatest integer function)

The range of f(x)=(sinpi[x^2-1])/(x^4+1) is f(x) in :

Range of f(x)=sin^(-1)x+tan^(-1)x+sqrt(x+1) is [a,b] then b+a is equal to

Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x is

Statement 1: The range of f(x)=sin^(2)x-sinx+1 is [3/4,oo) . Statemen 2: The range of f(x)=x^(2)-x+1 is [3/4,oo)AAxepsilonR .