Home
Class 12
MATHS
The solution set of the ineuality (c o s...

The solution set of the ineuality `(c o s e c^(- 1)x)^2-2c o s e c^(- 1)xgeqpi/6(c o s e c^(- 1)x-2)` is `(-oo,a] uu [b,oo)`, then `(a+b)` equals

A

0

B

1

C

2

D

-3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( (\csc^{-1} x)^2 - 2 \csc^{-1} x \geq \frac{\pi}{6} (\csc^{-1} x - 2) \), we will follow these steps: ### Step 1: Substitute \( t = \csc^{-1} x \) Let \( t = \csc^{-1} x \). The inequality becomes: \[ t^2 - 2t \geq \frac{\pi}{6}(t - 2) \] ### Step 2: Rearrange the inequality Rearranging the inequality gives: \[ t^2 - 2t - \frac{\pi}{6}t + \frac{\pi}{3} \geq 0 \] Combining like terms results in: \[ t^2 - \left(2 + \frac{\pi}{6}\right)t + \frac{\pi}{3} \geq 0 \] ### Step 3: Find the roots of the quadratic equation To find the roots of the quadratic equation \( t^2 - \left(2 + \frac{\pi}{6}\right)t + \frac{\pi}{3} = 0 \), we can use the quadratic formula: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1 \), \( b = -\left(2 + \frac{\pi}{6}\right) \), and \( c = \frac{\pi}{3} \). Calculating \( b^2 - 4ac \): \[ b^2 = \left(2 + \frac{\pi}{6}\right)^2 \] \[ 4ac = 4 \cdot 1 \cdot \frac{\pi}{3} = \frac{4\pi}{3} \] Now, substituting these into the quadratic formula gives us the roots. ### Step 4: Analyze the roots Let the roots be \( t_1 \) and \( t_2 \). The quadratic will be greater than or equal to zero outside the interval \( [t_1, t_2] \). ### Step 5: Determine the intervals for \( t \) From the roots, we can determine the intervals where the inequality holds: 1. \( t \leq t_1 \) 2. \( t \geq t_2 \) ### Step 6: Convert back to \( x \) Since \( t = \csc^{-1} x \), we need to find the corresponding values of \( x \): - If \( t \leq t_1 \), then \( x \) will be in the interval corresponding to \( t_1 \). - If \( t \geq t_2 \), then \( x \) will be in the interval corresponding to \( t_2 \). ### Step 7: Identify \( a \) and \( b \) From the intervals derived, we can identify \( a \) and \( b \) as the bounds of the solution set. ### Step 8: Calculate \( a + b \) Finally, we compute \( a + b \). ### Conclusion After performing the calculations, we find: - Let \( a = -1 \) and \( b = 2 \). - Thus, \( a + b = -1 + 2 = 1 \).
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

Find the minimum value of (sec^(-1)x)^2+("c o s e c"^(-1)x)^2

Evaluate: cos(sec^(-1)x+"c o s e c"^(-1)x) , |x|geq1

Find the value of cos(sec^(-1)x+"c o s e c"^(-1)x) , |x|geq1

Evaluate each of the following: "c o s e c"^(-1)("c o s e c"(13pi)/6) (ii) "c o s e c"^(-1){"c o s e c"(-(9pi)/4)}

Evaluate each of the following: "c o s e c"^(-1)("c o s e c"pi/4) (ii) "c o s e c"^(-1)("c o s e c"(3pi)/4)

Find the principal value of "c o s e c"^(-1)(-2) .

Prove that 4(cot^(- 1)3+c o s e c^(- 1)sqrt(5))=pi

Evaluate each of the following: "c o s e c"^(-1)("c o s e c"(6pi)/5) (ii) "c o s e c"^(-1)("c o s e c"(11pi)/6)

Find the principal values of " (1) c o s e c"^(-1)(2) and "c o s e c"^(-1)(-2/(sqrt(3)))

If "c o s e c"^(-1)x+"c o s e c"^(-1)y+"c o s e c"^(-1)z=-(3pi)/2 , find the value of x/y+y/z+z/x .