Home
Class 12
MATHS
Find the sum series: tan^-1 (1/3)+tan^-1...

Find the sum series: `tan^-1 (1/3)+tan^-1 (1/7)+tan^-1(1/13)+…to oo`

A

`(pi)/(4)`

B

`(pi)/(2)`

C

`(pi)/(3)`

D

`(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \( \tan^{-1} \left( \frac{1}{3} \right) + \tan^{-1} \left( \frac{1}{7} \right) + \tan^{-1} \left( \frac{1}{13} \right) + \ldots \) up to infinity, we will use the formula for the difference of inverse tangents: \[ \tan^{-1} x - \tan^{-1} y = \tan^{-1} \left( \frac{x - y}{1 + xy} \right) \] ### Step-by-Step Solution: 1. **Identify the Series**: We have the series \( S = \tan^{-1} \left( \frac{1}{3} \right) + \tan^{-1} \left( \frac{1}{7} \right) + \tan^{-1} \left( \frac{1}{13} \right) + \ldots \) 2. **Rewrite Terms**: We can express the terms in the series in a form that allows us to apply the inverse tangent difference formula. Notice that the denominators can be expressed as \( 2n + 1 \) for \( n = 1, 3, 6, \ldots \) which corresponds to the sequence of odd numbers starting from 3. 3. **Use the Formula**: We can write: \[ S = \sum_{n=1}^{\infty} \tan^{-1} \left( \frac{1}{2n + 1} \right) \] 4. **Pair the Terms**: Using the property of inverse tangent: \[ \tan^{-1} \left( \frac{1}{2n + 1} \right) = \tan^{-1} \left( \frac{1}{2n - 1} \right) - \tan^{-1} \left( \frac{1}{2n + 1} \right) \] This allows us to pair terms in the series. 5. **Cancellation**: When we write out the series, we will notice that many terms cancel out: \[ S = \left( \tan^{-1} \left( \frac{1}{1} \right) - \tan^{-1} \left( \frac{1}{3} \right) \right) + \left( \tan^{-1} \left( \frac{1}{3} \right) - \tan^{-1} \left( \frac{1}{5} \right) \right) + \ldots \] This results in a telescoping series. 6. **Evaluate the Limit**: As \( n \) approaches infinity, the last term approaches \( \tan^{-1} \left( \frac{1}{\infty} \right) = 0 \). Thus, we are left with: \[ S = \lim_{n \to \infty} \left( \tan^{-1} \left( n + 1 \right) - \tan^{-1} \left( 1 \right) \right) \] Since \( \tan^{-1} \left( n + 1 \right) \) approaches \( \frac{\pi}{2} \) as \( n \to \infty \), we have: \[ S = \frac{\pi}{2} - \frac{\pi}{4} \] 7. **Final Result**: Thus, the sum of the series is: \[ S = \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

Find the sum of the series tan^-1(1/2)+tan^-1(1/2)+tan^-1(1/18)+tan^-1(1/32)+............ to n terms

Find the sum of the series : tan^- 1(1/3)+tan^- 1(2/9)+....+tan^- 1((2^(n-1))/(1+2^(2n-1)))+...... oo

Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)(31/17)

Find the value of 4tan^(-1)1/5-tan^(-1)1/(70)+tan^(-1)1/(99)

Find value of tan^-1 (3/4)+tan^-1 (3/5)-tan^-1 (8/19)

prove that 2tan^-1 (1/3)+tan^-1 (1/7)=pi/4

Find the sum tan^-1 (1/(3+3.1+1^2))+tan^-1 (1/(3+3.2+2^2))+…+tan^-1 (1/(3+3n+n^2))

Find the value of 4 tan^(-1).(1)/(5) - tan^(-1).(1)/(70) + tan^(-1).(1)/(99)

Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)((31)/(17))

The sum of the infinite terms of the series "tan"^(-1)((1)/(3))+ "tan"^(-1)((2)/(9)) + tan^(-1)((4)/(33)) + .... is equal to (pi)/(n) The value of n is: