Home
Class 12
MATHS
The set of value of x, satisfying the eq...

The set of value of x, satisfying the equation `tan^(2)(sin^(-1)x) gt 1` is :

A

`(-1, 1)`

B

`(-(1)/(sqrt(2)), (1)/(sqrt(2)))`

C

`[-1, 1]-(-(1)/(sqrt(2)), (1)/(sqrt(2)))`

D

`(-1, 1)-[-(1)/(sqrt(2)), (1)/(sqrt(2))]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \tan^2(\sin^{-1} x) > 1 \), we will follow these steps: ### Step 1: Understanding the Inequality We start with the inequality: \[ \tan^2(\sin^{-1} x) > 1 \] This implies that: \[ \tan(\sin^{-1} x) > 1 \quad \text{or} \quad \tan(\sin^{-1} x) < -1 \] ### Step 2: Expressing \(\tan(\sin^{-1} x)\) Using the identity for tangent in terms of sine, we know: \[ \tan(\sin^{-1} x) = \frac{\sin(\sin^{-1} x)}{\cos(\sin^{-1} x)} = \frac{x}{\sqrt{1 - x^2}} \] Thus, we can rewrite the inequality as: \[ \frac{x}{\sqrt{1 - x^2}} > 1 \quad \text{or} \quad \frac{x}{\sqrt{1 - x^2}} < -1 \] ### Step 3: Solving the First Inequality Let's solve the first part: \[ \frac{x}{\sqrt{1 - x^2}} > 1 \] Cross-multiplying (valid since \(\sqrt{1 - x^2} > 0\) for \(|x| < 1\)): \[ x > \sqrt{1 - x^2} \] Squaring both sides: \[ x^2 > 1 - x^2 \] This simplifies to: \[ 2x^2 > 1 \quad \Rightarrow \quad x^2 > \frac{1}{2} \quad \Rightarrow \quad |x| > \frac{1}{\sqrt{2}} \] Thus, we have: \[ x < -\frac{1}{\sqrt{2}} \quad \text{or} \quad x > \frac{1}{\sqrt{2}} \] ### Step 4: Solving the Second Inequality Now, we solve the second part: \[ \frac{x}{\sqrt{1 - x^2}} < -1 \] Cross-multiplying (valid since \(\sqrt{1 - x^2} > 0\)): \[ x < -\sqrt{1 - x^2} \] Squaring both sides: \[ x^2 < 1 - x^2 \] This simplifies to: \[ 2x^2 < 1 \quad \Rightarrow \quad x^2 < \frac{1}{2} \quad \Rightarrow \quad |x| < \frac{1}{\sqrt{2}} \] Thus, we have: \[ -\frac{1}{\sqrt{2}} < x < 0 \] ### Step 5: Combining the Results From both parts, we combine the results: 1. From \(x > \frac{1}{\sqrt{2}}\) or \(x < -\frac{1}{\sqrt{2}}\) 2. From \( -\frac{1}{\sqrt{2}} < x < 0\) The combined solution set is: \[ x \in \left(-1, -\frac{1}{\sqrt{2}}\right) \cup \left(\frac{1}{\sqrt{2}}, 1\right) \] ### Final Answer Thus, the set of values of \(x\) satisfying the equation \( \tan^2(\sin^{-1} x) > 1 \) is: \[ x \in \left(-1, -\frac{1}{\sqrt{2}}\right) \cup \left(\frac{1}{\sqrt{2}}, 1\right) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

The set of values of x, satisfying the equation tan^2(sin^-1x) > 1 is -

The value of x satisfying the equation cos^(-1)3x+sin^(-1)2x=pi is

The complete set of values of x satisfying the inequality sin^(-1)(sin 5) gt x^(2)-4x is (2-sqrt(lambda-2pi), 2+sqrt(lambda-2pi)) , then lambda=

The number of real values of x satisfying the equation 3 sin^(-1)x +pi x-pi=0 is/are :

The number of integral values of x satisfying the equation tan^(-1) (3x) + tan^(-1) (5x) = tan^(-1) (7x) + tan^(-1) (2x) is ____

The set of values of x in (-pi, pi) satisfying the inequation |4"sin" x-1| lt sqrt(5) , is

The largest integral value of x satisfying the inequality (tan^(-1)(x))^(2)-4(tan^(-1)(x))+3gt0 is :

The value of x gt 1 satisfying the equation int_(1)^(x) tlnt dt=(1)/(4) is

Find the value of x satisfying the equation 2cos^(-1)(1-x)-3cos^(-1)x=pi

complete solution set of tan^(2) (sin^(-1) x) gt 1 is