Home
Class 12
MATHS
If int ("In"(cotx))/(sinx cos x) dx=(-1...

If `int ("In"(cotx))/(sinx cos x) dx=(-1)/(k)"In"^(2)(cotx)+C`
(where C is a constant), then the value of k is :

A

1

B

2

C

3

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the integral and find the value of \( k \) such that: \[ \int \frac{\ln(\cot x)}{\sin x \cos x} \, dx = -\frac{1}{k} \ln^2(\cot x) + C \] ### Step-by-step Solution: 1. **Differentiate Both Sides:** Start by differentiating both sides of the equation with respect to \( x \). \[ \frac{d}{dx} \left( \int \frac{\ln(\cot x)}{\sin x \cos x} \, dx \right) = \frac{d}{dx} \left( -\frac{1}{k} \ln^2(\cot x) + C \right) \] 2. **Apply the Fundamental Theorem of Calculus:** By the Fundamental Theorem of Calculus, the left side simplifies to: \[ \frac{\ln(\cot x)}{\sin x \cos x} \] 3. **Differentiate the Right Side:** Now differentiate the right side. Using the chain rule: \[ \frac{d}{dx} \left( -\frac{1}{k} \ln^2(\cot x) \right) = -\frac{2}{k} \ln(\cot x) \cdot \frac{d}{dx}(\ln(\cot x)) \] The derivative of \( \ln(\cot x) \) is: \[ \frac{d}{dx}(\ln(\cot x)) = \frac{-\csc^2(x)}{\cot x} = -\frac{1}{\sin x \cos x} \] Therefore, the derivative becomes: \[ -\frac{2}{k} \ln(\cot x) \cdot \left(-\frac{1}{\sin x \cos x}\right) = \frac{2 \ln(\cot x)}{k \sin x \cos x} \] 4. **Set the Derivatives Equal:** Now we have: \[ \frac{\ln(\cot x)}{\sin x \cos x} = \frac{2 \ln(\cot x)}{k \sin x \cos x} \] 5. **Cancel Common Terms:** Assuming \( \ln(\cot x) \neq 0 \), we can cancel \( \ln(\cot x) \) from both sides: \[ 1 = \frac{2}{k} \] 6. **Solve for \( k \):** Rearranging gives: \[ k = 2 \] ### Final Answer: Thus, the value of \( k \) is \( 2 \). ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

int(cotx)/(log(sinx)dx

int tan^-1(cotx)dx

If the solution of the differential equation x^2dy + 2xy dx = sin x dx is x^(k)y + cos x = C (where C is an arbitrary constant), then the value of k is equal to

If int x^(26).(x-1)^(17).(5x-3)dx=(x^(27).(x-1)^(18))/(k)+C where C is a constant of integration, then the value of k is equal to

Evaluate: int(cotx)/(logsinx)dx

If int(sqrt(cotx))/(sinx cos x)dx=A sqrt(cotx)+B , then A is equal to ______________

Evaluate: int(cotx)/(sinx)dx

If int(sqrt(cotx))/(sinxcosx)dx=Psqrt(cotx)+Q , then P equals

If the integral I=int(x^(5))/(sqrt(1+x^(3)))dx =Ksqrt(x^(3)+1)(x^(3)-2)+C , (where, C is the constant of integration), then the value of 9K is equal to

int Cotx dx