Home
Class 12
MATHS
Let f(x)=tan^(-1)((sqrt(1+x^(2))-1)/(x))...

Let `f(x)=tan^(-1)((sqrt(1+x^(2))-1)/(x))` then which of the following is correct :

A

(a) f(x) has only one integer in its range

B

(b) Range of f(x) is `(-(pi)/(4), (pi)/(4))-{0}`

C

(c) Range of f(x) is `(-(pi)/(2), (pi)/(2))-{0}`

D

(d) Range of f(x) is `[ -(pi)/(4), (pi)/(4)]-{0}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the function \( f(x) = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right) \) and determine its range. ### Step 1: Substitute \( x \) with \( \tan \theta \) Let \( x = \tan \theta \). Then, we can rewrite the function as: \[ f(x) = \tan^{-1}\left(\frac{\sqrt{1+\tan^2 \theta}-1}{\tan \theta}\right) \] ### Step 2: Simplify the expression inside the arctangent Using the identity \( 1 + \tan^2 \theta = \sec^2 \theta \), we have: \[ \sqrt{1+\tan^2 \theta} = \sqrt{\sec^2 \theta} = \sec \theta \] Thus, the expression becomes: \[ f(x) = \tan^{-1}\left(\frac{\sec \theta - 1}{\tan \theta}\right) \] ### Step 3: Rewrite in terms of sine and cosine We can express \( \sec \theta \) and \( \tan \theta \) in terms of sine and cosine: \[ f(x) = \tan^{-1}\left(\frac{\frac{1}{\cos \theta} - 1}{\frac{\sin \theta}{\cos \theta}}\right) = \tan^{-1}\left(\frac{1 - \cos \theta}{\sin \theta}\right) \] ### Step 4: Simplify the fraction This can be simplified as: \[ f(x) = \tan^{-1}\left(\frac{1 - \cos \theta}{\sin \theta}\right) \] Using the identity \( 1 - \cos \theta = 2\sin^2\left(\frac{\theta}{2}\right) \) and \( \sin \theta = 2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right) \), we can rewrite it as: \[ f(x) = \tan^{-1}\left(\frac{2\sin^2\left(\frac{\theta}{2}\right)}{2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)}\right) = \tan^{-1}\left(\tan\left(\frac{\theta}{2}\right)\right) \] ### Step 5: Conclude the simplification Thus, we have: \[ f(x) = \frac{\theta}{2} \] Since \( \theta = \tan^{-1}(x) \), we can express \( f(x) \) as: \[ f(x) = \frac{1}{2} \tan^{-1}(x) \] ### Step 6: Determine the range of \( f(x) \) The range of \( \tan^{-1}(x) \) is \( (-\frac{\pi}{2}, \frac{\pi}{2}) \). Therefore, the range of \( \frac{1}{2} \tan^{-1}(x) \) will be: \[ \left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \] ### Step 7: Check for integers in the range The range \( \left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \) does contain the integer \( 0 \). However, we need to check if \( f(x) \) is defined at \( x = 0 \): \[ f(0) = \tan^{-1}\left(\frac{\sqrt{1+0^2}-1}{0}\right) \text{ is of the form } \frac{0}{0}, \text{ which is undefined.} \] ### Conclusion Since \( f(0) \) is undefined, the range \( \left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \) does not contain any integers. Therefore, the correct option is: **Option B: \( \left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \)**. ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

Observe the following statements: "I. If "f(x)=ax^(41)+bx^(-40)," then "(f''(x))/(f(x))=1640x^(2) "II. "(d)/(dx){tan^(-1)((2x)/(1-x^(2)))}=(1)/(1+x^(2)) Which of the following is correct ?

tan^(- 1)(1/(sqrt(x^2-1))),|x|gt1

Let f : I - {-1,0,1} to [-pi, pi] be defined as f(x) = 2 tan^(-1) x - tan^(-1)((2x)/(1 -x^(2))) , then which of the following statements (s) is (are) correct ?

Let f(x)=sin^(-1)x and g(x)=cos^(-1)x , then which of the following statements are correct?

If f(x)=(1)/(sqrt(1-x^(2))) , which of the following describes all the real values of x for which f(x) is undefined ?

Let f(x)=cos^(-1)((1-tan^(2)(x)/(2))/(1+tan^(2)(x)/(2))) . Then which of the following statement is/are true ?

Let f(x) = tan^(-1)(((x-2))/(x^(2)+2x+2)) ,then 26 f'(1) is

Let f(x) = sin (sin^-1 2x) + cosec (cosec^-1 2x) + tan(tan^-1 2x) , then which one of the following statements is/are incorrect ?

Let f:R->[-1, 1] be defined as f(x) = cos(sin x), then which of the following is(are) correct ?

f(x)=sqrt(1-sin^(2)x)+sqrt(1+tan^(2)x) then