Home
Class 12
MATHS
If tan^(- 1)\ 1/4+tan^(- 1)\ 2/9=1/2cos^...

If `tan^(- 1)\ 1/4+tan^(- 1)\ 2/9=1/2cos^(- 1)x` then `x` is equal to

A

(a)`(1)/(2)`

B

(b)`(2)/(5)`

C

(c)`(3)/(5)`

D

(d)None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right) = \frac{1}{2} \cos^{-1}(x) \), we will follow these steps: ### Step 1: Use the identity for the sum of inverse tangents We know that: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] if \( ab < 1 \). Here, let \( a = \frac{1}{4} \) and \( b = \frac{2}{9} \). ### Step 2: Calculate \( a + b \) and \( ab \) Calculate: \[ a + b = \frac{1}{4} + \frac{2}{9} \] To add these fractions, find a common denominator. The least common multiple of 4 and 9 is 36. \[ \frac{1}{4} = \frac{9}{36}, \quad \frac{2}{9} = \frac{8}{36} \] So, \[ a + b = \frac{9}{36} + \frac{8}{36} = \frac{17}{36} \] Now calculate \( ab \): \[ ab = \frac{1}{4} \cdot \frac{2}{9} = \frac{2}{36} = \frac{1}{18} \] ### Step 3: Apply the identity Now substitute into the identity: \[ \tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right) = \tan^{-1}\left(\frac{\frac{17}{36}}{1 - \frac{1}{18}}\right) \] Calculate \( 1 - ab \): \[ 1 - ab = 1 - \frac{1}{18} = \frac{18 - 1}{18} = \frac{17}{18} \] Now substitute back into the equation: \[ \tan^{-1}\left(\frac{\frac{17}{36}}{\frac{17}{18}}\right) = \tan^{-1}\left(\frac{17 \cdot 18}{36 \cdot 17}\right) = \tan^{-1}\left(\frac{18}{36}\right) = \tan^{-1}\left(\frac{1}{2}\right) \] ### Step 4: Set the equation Now we have: \[ \tan^{-1}\left(\frac{1}{2}\right) = \frac{1}{2} \cos^{-1}(x) \] ### Step 5: Use the double angle identity for cosine We can use the identity: \[ 2 \tan^{-1}(y) = \cos^{-1}\left(\frac{1 - y^2}{1 + y^2}\right) \] Here, \( y = \frac{1}{2} \): \[ 2 \tan^{-1}\left(\frac{1}{2}\right) = \cos^{-1}\left(\frac{1 - \left(\frac{1}{2}\right)^2}{1 + \left(\frac{1}{2}\right)^2}\right) \] Calculating: \[ 1 - \left(\frac{1}{2}\right)^2 = 1 - \frac{1}{4} = \frac{3}{4} \] \[ 1 + \left(\frac{1}{2}\right)^2 = 1 + \frac{1}{4} = \frac{5}{4} \] Thus: \[ \cos^{-1}\left(\frac{\frac{3}{4}}{\frac{5}{4}}\right) = \cos^{-1}\left(\frac{3}{5}\right) \] ### Step 6: Compare both sides Now we have: \[ \frac{1}{2} \cos^{-1}(x) = \frac{1}{2} \cos^{-1}\left(\frac{3}{5}\right) \] ### Step 7: Solve for \( x \) By comparing both sides, we can conclude: \[ x = \frac{3}{5} \] ### Final Answer Thus, the value of \( x \) is \( \frac{3}{5} \). ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

tan^(- 1)(1/4)+tan^(- 1)(2/9)=1/2tan^(- 1)(4/3)

tan^(- 1)(1/4)+tan^(- 1)(2/9)=1/2tan^(- 1)(4/3)

If 3tan^(-1)(1/(2+sqrt(3)))-tan^(-1)1/x=tan^(-1)1/3, then x is equal to 1 (b) 2 (c) 3 (d) sqrt(2)

if tan^(-1)(1/x)+cos^(-1)(2/sqrt5)=pi/4 then x equals

2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)

If 3tan^(-1)((1)/(2+sqrt3))-tan^(-1).(1)/(3)=tan^(-1).(1)/(x) , then the value of x is equal to

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)

Prove that: tan^-1(1/4)+tan^-1(2/9)=1/2 cos^-1(3/5) .

tan^(- 1)(x+2/x)-tan^(- 1)(4/x)=tan^(- 1)(x-2/x)

The value of 2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x) is equal to cot^(-1)x (b) cot^(-1)1/x tan^(-1)x (d) none of these