Home
Class 12
MATHS
The sum of the series cot^(-1)((9)/(2))...

The sum of the series `cot^(-1)((9)/(2))+cot^(-1)((33)/(4))+cot^(-1)((129)/(8))+…….oo` is equal to :

A

`cot^(-1)(2)`

B

`cot^(-1)(3)`

C

`cot^(-1)(-1)`

D

`cot^(-1)(1)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

The sum of the infinite series cot^(-1)(7/4)+cot^(-1)((19)/4) +cot^(-1)((39)/4)....oo

Prove that : cot^(-1) 3 + cot^(-1).(3)/(4) = cot^(-1) .(1)/(3)

Prove: cot^(-1)(1/2)-1/2cot^(-1)(4/3)=pi/4

cot^(-1)(-1/2)+cot^(-1)(-1/3) is equal to

The sum to infinite terms of the series cot^(- 1)(2^2+1/2)+cot^(- 1)(2^3+1/(2^2))+cot^(- 1)(2^4+1/(2^3))+... is

cot^(2)x-(1)/(2)cot^(4)x+(1)/(3)cot^(6)x -(1)/(4)cot^(8)x+…oo=

Sum of infinite terms of the series cot^(-1) ( 1^(2) + 3/4) + cot^(-1) ( 2^(2) + 3/4) + cot^(-1) ( 3^(2) + 3/4) + ... is

If the sum of first 16 terms of the series s=cot^(-1)(2^2+1/2)+cot^(-1)(2^3+1/(2^2))+cot^(-1)(2^4+1/(2^3))+ up to terms is cot^(-1)((1+2^n)/(2(2^(16)-1))) , then find the value of ndot

cot^(-1)(-2) is equal to

Prove that cot^(-1)(13)+cot^(-1)(21)+cot^(-1)(-8)=pi .