Home
Class 12
MATHS
Range of f(x)=sin^(-1)[x-1]+2cos^(-1)[x-...

Range of `f(x)=sin^(-1)[x-1]+2cos^(-1)[x-2]` ([.] denotes greatest integer function)

A

`{-(pi)/(2), 0}`

B

`{(pi)/(2), 2pi}`

C

`{(pi)/(4), (pi)/(2)}`

D

`{(3pi)/(2), 2pi}`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

The domain of definition of f(x)=sin^(- 1)[2-4x^2] is ([.] denotes the greatest integer function).

Consider f(x) = sin^(-1) [2x] + cos^(-1) ( [ x] - 1) ( where [.] denotes greatest integer function .) If domain of f(x) " is " [a,b) and the range of f(x) is {c,d}" then " a + b + (2d)/c is equal to ( where c lt d )

The range of sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [.] denotes the greatest integer function, is (a) {pi/2,pi} (b) {pi} (c) {pi/2} (d) none of these

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then find the domain and range

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

f(x)=sin^(-1)((2-3[x])/4) , which [*] denotes the greatest integer function.