Home
Class 12
MATHS
The solution(s) of the equation cos^(-1)...

The solution(s) of the equation `cos^(-1)x=tan^(-1)x` satisfy

A

`x^(2)=(sqrt(5)-1)/(2)`

B

`x^(2)=(sqrt(5)+1)/(2)`

C

`sin(cos^(-1)x)=(sqrt(5)-1)/(2)`

D

`tan(cos^(-1)x)=(sqrt(5)-1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos^{-1} x = \tan^{-1} x \), we will follow these steps: ### Step 1: Set the equation Let \( y = \tan^{-1} x \). Then we can express \( x \) in terms of \( y \): \[ x = \tan y \] Also, from the original equation, we have: \[ \cos^{-1} x = y \] This implies: \[ x = \cos y \] ### Step 2: Equate the two expressions for \( x \) Since both expressions equal \( x \), we can set them equal to each other: \[ \tan y = \cos y \] ### Step 3: Rewrite \( \tan y \) Recall that: \[ \tan y = \frac{\sin y}{\cos y} \] Thus, we can rewrite our equation as: \[ \frac{\sin y}{\cos y} = \cos y \] ### Step 4: Cross-multiply Cross-multiplying gives us: \[ \sin y = \cos^2 y \] ### Step 5: Use the Pythagorean identity Using the identity \( \cos^2 y = 1 - \sin^2 y \), we can substitute: \[ \sin y = 1 - \sin^2 y \] ### Step 6: Rearrange to form a quadratic equation Rearranging gives us: \[ \sin^2 y + \sin y - 1 = 0 \] ### Step 7: Apply the quadratic formula Using the quadratic formula \( \sin y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 1, b = 1, c = -1 \): \[ \sin y = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] \[ = \frac{-1 \pm \sqrt{1 + 4}}{2} \] \[ = \frac{-1 \pm \sqrt{5}}{2} \] ### Step 8: Determine valid solutions for \( \sin y \) The range of \( \sin y \) is from -1 to 1. Therefore, we need to check the two potential solutions: 1. \( \sin y = \frac{-1 + \sqrt{5}}{2} \) 2. \( \sin y = \frac{-1 - \sqrt{5}}{2} \) Calculating these: - For \( \sin y = \frac{-1 + \sqrt{5}}{2} \), this is valid since \( \sqrt{5} \approx 2.236 \), thus \( \frac{-1 + \sqrt{5}}{2} \approx 0.618 \) which is within the range. - For \( \sin y = \frac{-1 - \sqrt{5}}{2} \), this value is negative and less than -1, hence invalid. ### Step 9: Relate back to \( x \) Since \( \sin y = x^2 \) (from \( \sin y = \tan^{-1} x \)), we have: \[ x^2 = \frac{-1 + \sqrt{5}}{2} \] Thus, the solutions for \( x \) are: \[ x = \pm \sqrt{\frac{-1 + \sqrt{5}}{2}} \] ### Final Answer The solutions of the equation \( \cos^{-1} x = \tan^{-1} x \) are: \[ x = \sqrt{\frac{-1 + \sqrt{5}}{2}} \quad \text{and} \quad x = -\sqrt{\frac{-1 + \sqrt{5}}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|1 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

cos^(-1)x=tan^(-1)x then

The solution set of the equation sin^(-1)x=2 tan^(-1)x is

The solution set of the equation cos^(-1)x-sin^(-1)x=sin^(-1)(1-x) is

The solution of the equation cos^(-1)x+cos^(-1)2x=(2pi)/(3) is

Number of solution(s) of the equation 2tan^(-1)(2x-1)=cos^(-1)(x) is :

Number of solution (s) of the equations cos^(-1) ( cos x) = x^(2) is

The number of solutions of the equation sin^(-1)|x|=|cos^(-1)x| are

The number of solutions of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 is 2 (b) 3 (c) 1 (d) 0

Number of solutions (s) of the equations cos^(-1) ( 1-x) - 2 cos^(-1) x = pi/2 is

Number of solutions of equation sin(cos^(-1)(tan(sec^(-1)x)))=sqrt(1+x)i s//a r e____