Home
Class 12
MATHS
If the numerical value of tan(cos^(-1)(...

If the numerical value of `tan(cos^(-1)((4)/(5))+tan^(-1)((2)/(3)))" is " ((a)/(b))`, where a, b are two positive integers and their H.C.F. is 1

A

`a+b=23`

B

`a-b=11`

C

`3b=a+1`

D

`2a=3b`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the numerical value of \( \tan(\cos^{-1}(\frac{4}{5}) + \tan^{-1}(\frac{2}{3})) \) and express it in the form \( \frac{a}{b} \) where \( a \) and \( b \) are positive integers with their H.C.F. being 1. ### Step-by-Step Solution: 1. **Identify the angles**: Let \( \theta = \cos^{-1}(\frac{4}{5}) \) and \( \phi = \tan^{-1}(\frac{2}{3}) \). We need to find \( \tan(\theta + \phi) \). 2. **Use the right triangle for \( \theta \)**: From \( \theta = \cos^{-1}(\frac{4}{5}) \), we can visualize a right triangle where: - Adjacent side (base) = 4 - Hypotenuse = 5 - Using Pythagoras theorem, the opposite side (perpendicular) can be calculated as: \[ \text{Opposite} = \sqrt{5^2 - 4^2} = \sqrt{25 - 16} = \sqrt{9} = 3 \] Thus, \( \tan(\theta) = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{3}{4} \). 3. **Calculate \( \tan(\phi) \)**: From \( \phi = \tan^{-1}(\frac{2}{3}) \), we have: \[ \tan(\phi) = \frac{2}{3} \] 4. **Use the tangent addition formula**: The formula for \( \tan(\theta + \phi) \) is: \[ \tan(\theta + \phi) = \frac{\tan(\theta) + \tan(\phi)}{1 - \tan(\theta) \tan(\phi)} \] Substituting the values: \[ \tan(\theta + \phi) = \frac{\frac{3}{4} + \frac{2}{3}}{1 - \left(\frac{3}{4} \cdot \frac{2}{3}\right)} \] 5. **Calculate the numerator**: To add \( \frac{3}{4} \) and \( \frac{2}{3} \), we find a common denominator: \[ \frac{3}{4} = \frac{9}{12}, \quad \frac{2}{3} = \frac{8}{12} \] Thus, \[ \tan(\theta + \phi) = \frac{\frac{9}{12} + \frac{8}{12}}{1 - \frac{6}{12}} = \frac{\frac{17}{12}}{\frac{1}{2}} = \frac{17}{12} \cdot 2 = \frac{17}{6} \] 6. **Identify \( a \) and \( b \)**: From \( \tan(\theta + \phi) = \frac{17}{6} \), we have \( a = 17 \) and \( b = 6 \). 7. **Check the H.C.F.**: The H.C.F. of 17 and 6 is 1, confirming they are co-prime. ### Final Answer: The numerical value of \( \tan(\cos^{-1}(\frac{4}{5}) + \tan^{-1}(\frac{2}{3})) \) is \( \frac{17}{6} \).
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|1 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

Write the value of tan^(-1)(a/b)-tan^(-1)((a-b)/(a+b))

The value of tan[(1)/(2)cos^(-1)((sqrt(5))/(3))] is :

1.What is the value of tan[(1)/(2)cos^(-1)((3)/(5))]+tan[(1)/(2)cos^(-1)((4)/(5))] ?

The value of tan[cos^(-1)(4/5)+tan^(-1)(2/3)] is 6/(17) (b) 7/(16) (c) (16)/7 (d) none of these

The value of tan(cos^(-1)(3/5)+tan^(-1)(1/4)) is (a) (19)/8 (b) 8/(19) (c) (19)/(12) (d) 3/4

Find value of tan^-1 (3/4)+tan^-1 (3/5)-tan^-1 (8/19)

The numerical value of "tan"(2tan^(-1)(1/5)-pi/4 is equal to____

The numerical value of "tan"(2tan^(-1)(1/5)-pi/4 is equal to____

Show that : "tan"^(-1)(1)/(4) +"tan"^(-1)(2)/(9) = (1)/(2) "cos"^(-1)(3)/(5) .

Prove the following: tan^(-1)(1/4)+tan^(-1)(2/9)=1/2cos^(-1)(3/5)