Home
Class 12
MATHS
If 2"tan"^(-1)(1)/(5)-"sin"^(-1)(3)/(5)...

If `2"tan"^(-1)(1)/(5)-"sin"^(-1)(3)/(5)= -"cos"^(-1)(63)/(lambda`, then `lambda=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 \tan^{-1} \left( \frac{1}{5} \right) - \sin^{-1} \left( \frac{3}{5} \right) = -\cos^{-1} \left( \frac{63}{\lambda} \right) \), we will follow these steps: ### Step 1: Simplify \( 2 \tan^{-1} \left( \frac{1}{5} \right) \) Using the double angle formula for tangent: \[ 2 \tan^{-1}(x) = \tan^{-1} \left( \frac{2x}{1 - x^2} \right) \] Let \( x = \frac{1}{5} \): \[ 2 \tan^{-1} \left( \frac{1}{5} \right) = \tan^{-1} \left( \frac{2 \cdot \frac{1}{5}}{1 - \left( \frac{1}{5} \right)^2} \right) = \tan^{-1} \left( \frac{\frac{2}{5}}{1 - \frac{1}{25}} \right) = \tan^{-1} \left( \frac{\frac{2}{5}}{\frac{24}{25}} \right) = \tan^{-1} \left( \frac{2 \cdot 25}{5 \cdot 24} \right) = \tan^{-1} \left( \frac{10}{24} \right) = \tan^{-1} \left( \frac{5}{12} \right) \] ### Step 2: Simplify \( \sin^{-1} \left( \frac{3}{5} \right) \) We can visualize this using a right triangle where the opposite side is 3 and the hypotenuse is 5. By the Pythagorean theorem: \[ \text{Adjacent} = \sqrt{5^2 - 3^2} = \sqrt{25 - 9} = \sqrt{16} = 4 \] Thus, we have: \[ \tan \theta = \frac{3}{4} \quad \Rightarrow \quad \theta = \tan^{-1} \left( \frac{3}{4} \right) \] ### Step 3: Substitute into the equation Now substituting back into the equation: \[ \tan^{-1} \left( \frac{5}{12} \right) - \tan^{-1} \left( \frac{3}{4} \right) = -\cos^{-1} \left( \frac{63}{\lambda} \right) \] ### Step 4: Use the tangent subtraction formula Using the formula: \[ \tan^{-1}(A) - \tan^{-1}(B) = \tan^{-1} \left( \frac{A - B}{1 + AB} \right) \] Let \( A = \frac{5}{12} \) and \( B = \frac{3}{4} \): \[ \tan^{-1} \left( \frac{\frac{5}{12} - \frac{3}{4}}{1 + \frac{5}{12} \cdot \frac{3}{4}} \right) \] Finding a common denominator for \( \frac{5}{12} - \frac{3}{4} \): \[ \frac{5}{12} - \frac{9}{12} = \frac{-4}{12} = -\frac{1}{3} \] Calculating \( 1 + \frac{5 \cdot 3}{12 \cdot 4} = 1 + \frac{15}{48} = \frac{48 + 15}{48} = \frac{63}{48} \) Thus: \[ \tan^{-1} \left( \frac{-\frac{1}{3}}{\frac{63}{48}} \right) = \tan^{-1} \left( -\frac{48}{189} \right) = -\tan^{-1} \left( \frac{48}{189} \right) \] ### Step 5: Relate to \( -\cos^{-1} \left( \frac{63}{\lambda} \right) \) We have: \[ -\tan^{-1} \left( \frac{48}{189} \right) = -\cos^{-1} \left( \frac{63}{\lambda} \right) \] This implies: \[ \tan^{-1} \left( \frac{48}{189} \right) = \cos^{-1} \left( \frac{63}{\lambda} \right) \] ### Step 6: Find \( \lambda \) Using the identity \( \cos \theta = \frac{adjacent}{hypotenuse} \): In the triangle formed, we know: \[ \cos \theta = \frac{63}{\sqrt{63^2 + 48^2}} = \frac{63}{\sqrt{3969 + 2304}} = \frac{63}{\sqrt{6273}} = \frac{63}{\sqrt{63^2 + 48^2}} = \frac{63}{65} \] Thus: \[ \lambda = 65 \] ### Final Answer \[ \lambda = 65 \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|1 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

If 2"tan"^(-1)(1)/(5)-"sin"^(-1)(3)/(5)= -"cos"^(-1)(9lambda)/(65) , then lambda=

Prove that : tan^(-1)(63)/(16)=sin^(-1)5/(13)+cos^(-1)3/5

Prove that : tan^(-1)(63)/(16)=sin^(-1)5/(13)+cos^(-1)3/5

Show that : "tan"^(-1)(1)/(4) +"tan"^(-1)(2)/(9) = (1)/(2) "cos"^(-1)(3)/(5) .

Prove that: tan^(-1)(63/16)=sin^(-1)(5/13)+cos^(-1)(3/5)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Sometimes we are just concerned with finding integral solutions to equations. Consider the equation tan^(-1).(1)/m+tan^(-1).(1)/n=tan^(-1).(1)/lambda , where m,n, lambda in N If lambda is such that lambda^2=1 is a prime, then how many solutions (m,n) are there for the equation?

Prove that : tan^(-1)(63/16)=sin^(-1)\(5/13)+cos^(-1)(3/5)