Home
Class 12
MATHS
If 2"tan"^(-1)(1)/(5)-"sin"^(-1)(3)/(5)...

If `2"tan"^(-1)(1)/(5)-"sin"^(-1)(3)/(5)= -"cos"^(-1)(9lambda)/(65)`, then `lambda=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 \tan^{-1}\left(\frac{1}{5}\right) - \sin^{-1}\left(\frac{3}{5}\right) = -\cos^{-1}\left(\frac{9\lambda}{65}\right) \), we will follow these steps: ### Step 1: Simplify \( 2 \tan^{-1}\left(\frac{1}{5}\right) \) Using the formula for double angle in tangent: \[ \tan^{-1}(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \] Let \( x = \frac{1}{5} \): \[ 2 \tan^{-1}\left(\frac{1}{5}\right) = \tan^{-1}\left(\frac{2 \cdot \frac{1}{5}}{1 - \left(\frac{1}{5}\right)^2}\right) = \tan^{-1}\left(\frac{\frac{2}{5}}{1 - \frac{1}{25}}\right) \] Calculating the denominator: \[ 1 - \frac{1}{25} = \frac{24}{25} \] So, \[ 2 \tan^{-1}\left(\frac{1}{5}\right) = \tan^{-1}\left(\frac{\frac{2}{5}}{\frac{24}{25}}\right) = \tan^{-1}\left(\frac{2 \cdot 25}{5 \cdot 24}\right) = \tan^{-1}\left(\frac{10}{24}\right) = \tan^{-1}\left(\frac{5}{12}\right) \] ### Step 2: Convert \( \sin^{-1}\left(\frac{3}{5}\right) \) to tangent Using the Pythagorean theorem, we can find the adjacent side: \[ \text{If } \sin \theta = \frac{3}{5}, \text{ then } \cos \theta = \sqrt{1 - \sin^2 \theta} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{\frac{16}{25}} = \frac{4}{5} \] Thus, \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{3/5}{4/5} = \frac{3}{4} \] Therefore, \[ \sin^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{3}{4}\right) \] ### Step 3: Substitute back into the equation Now substituting back, we have: \[ \tan^{-1}\left(\frac{5}{12}\right) - \tan^{-1}\left(\frac{3}{4}\right) \] ### Step 4: Use the tangent subtraction formula Using the formula: \[ \tan^{-1}(x) - \tan^{-1}(y) = \tan^{-1}\left(\frac{x - y}{1 + xy}\right) \] Let \( x = \frac{5}{12} \) and \( y = \frac{3}{4} \): \[ \tan^{-1}\left(\frac{\frac{5}{12} - \frac{3}{4}}{1 + \frac{5}{12} \cdot \frac{3}{4}}\right) \] Calculating \( \frac{3}{4} = \frac{9}{12} \): \[ \frac{5}{12} - \frac{9}{12} = \frac{-4}{12} = -\frac{1}{3} \] Calculating \( 1 + \frac{5}{12} \cdot \frac{3}{4} = 1 + \frac{15}{48} = \frac{48 + 15}{48} = \frac{63}{48} \): \[ \tan^{-1}\left(\frac{-\frac{1}{3}}{\frac{63}{48}}\right) = \tan^{-1}\left(-\frac{16}{63}\right) \] ### Step 5: Relate to \( \cos^{-1} \) We have: \[ -\tan^{-1}\left(\frac{16}{63}\right) = -\cos^{-1}\left(\frac{9\lambda}{65}\right) \] This implies: \[ \cos^{-1}\left(\frac{16}{65}\right) = \cos^{-1}\left(\frac{9\lambda}{65}\right) \] Thus, \[ \frac{9\lambda}{65} = \frac{16}{65} \] ### Step 6: Solve for \( \lambda \) Multiplying both sides by 65: \[ 9\lambda = 16 \implies \lambda = \frac{16}{9} = 7 \] ### Final Answer \[ \lambda = 7 \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|1 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

If 2"tan"^(-1)(1)/(5)-"sin"^(-1)(3)/(5)= -"cos"^(-1)(63)/(lambda , then lambda=

Show that : "tan"^(-1)(1)/(4) +"tan"^(-1)(2)/(9) = (1)/(2) "cos"^(-1)(3)/(5) .

The value of 3 "tan"^(-1)(1)/(2) + 2 "tan"^(-1)(1)/(5) + "sin"^(-1)(142)/(65sqrt(5)) is :

Prove that : "tan"^(-1)3/4+"sin"^(-1)5/13="cos"^(-1)33/65

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that: cos^(-1)(12/13)+sin^(-1)(3/5)=sin^(-1)(56/65)

Prove that: cos^(-1)(12/13)+sin^(-1)(3/5)=sin^(-1)(56/65)

Prove that : tan^(-1)(63)/(16)=sin^(-1)5/(13)+cos^(-1)3/5