Home
Class 12
MATHS
Let B1,C1 and D1 are points on AB,AC and...

Let `B_1,C_1 and D_1` are points on `AB,AC and AD` of the parallelogram `ABCD,` such that `vec(AB_1)=k_1vec(AC,) vec(AC_1)=k_2vec(AC) and vec(AD_1)=k_2 vec(AD,)` where `k_1,k_2 and k_3` are scalar.

A

`lambda_(1), lambda_(3) and lambda_(2) ` are in AP

B

`lambda_(1), lambda_(3) and lambda_(2)` are in GP

C

`lambda_(1),lambda_(3) and lambda_(2)` are in HP

D

`lambda_(1)+lambda_(2)+lambda_(3)=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given points \( B_1, C_1, \) and \( D_1 \) in the context of the parallelogram \( ABCD \) and the relationships defined by the scalars \( k_1, k_2, \) and \( k_3 \). ### Step-by-Step Solution: 1. **Define the Points**: Let \( A \) be the origin (0 vector), \( B \), \( C \), and \( D \) be represented by vectors \( \vec{b}, \vec{c}, \) and \( \vec{d} \) respectively. The points \( B_1, C_1, \) and \( D_1 \) are defined as: \[ \vec{AB_1} = k_1 \vec{AB}, \quad \vec{AC_1} = k_2 \vec{AC}, \quad \vec{AD_1} = k_3 \vec{AD} \] 2. **Express the Vectors**: Since \( \vec{AB} = \vec{b}, \vec{AC} = \vec{c}, \vec{AD} = \vec{d} \), we can express: \[ \vec{B_1} = k_1 \vec{b}, \quad \vec{C_1} = k_2 \vec{c}, \quad \vec{D_1} = k_3 \vec{d} \] 3. **Using the Parallelogram Properties**: In a parallelogram, we have: \[ \vec{C} = \vec{A} + \vec{B} + \vec{D} \implies \vec{C} = \vec{b} + \vec{d} \] 4. **Apply Triangle Law**: For triangle \( AB_1D_1 \): \[ \vec{B_1D_1} = \vec{D_1} - \vec{B_1} = k_3 \vec{d} - k_1 \vec{b} \] 5. **Express \( \vec{B_1C_1} \)**: By the triangle law, we can express \( \vec{B_1C_1} \): \[ \vec{B_1C_1} = \vec{C_1} - \vec{B_1} = k_2 \vec{c} - k_1 \vec{b} \] 6. **Establish Parallelism**: Since \( \vec{B_1C_1} \) is parallel to \( \vec{B_1D_1} \), we can write: \[ \vec{B_1C_1} = k \cdot \vec{B_1D_1} \quad \text{for some scalar } k \] 7. **Set Up the Equation**: From the previous steps, we have: \[ k_2 \vec{c} - k_1 \vec{b} = k \left( k_3 \vec{d} - k_1 \vec{b} \right) \] 8. **Compare Coefficients**: Rearranging gives us two equations: - Coefficient of \( \vec{b} \): \[ -k_1 = -k k_1 \implies k = 1 \quad \text{(if } k_1 \neq 0\text{)} \] - Coefficient of \( \vec{d} \): \[ k_2 = k k_3 \implies k_2 = k_3 \quad \text{(if } k \neq 0\text{)} \] 9. **Final Relationships**: From the above, we can derive: \[ k_2 - k_1 = -k k_1 \quad \text{and} \quad k_2 = k k_3 \] 10. **Conclusion**: We conclude that \( k_1, k_2, k_3 \) are in Harmonic Progression (HP) based on the derived relationships.
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|20 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

In a parallelogram ABCD. Prove that vec(AC)+ vec (BD) = 2 vec(BC)

Given a parallelogram ABCD . If |vec(AB)|=a, |vec(AD)| = b & |vec(AC)| = c , then vec(DB) . vec(AB) has the value

In a regular hexagon ABCDEF, prove that vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=3vec(AD)

If ABCD is a parallelogram, then vec(AC) - vec(BD) =

vec(AC) and vec(BD) are the diagonals of a parallelogram ABCD. Prove that (i) vec(AC) + vec(BD) - 2 vec(BC) (ii) vec(AC) - vec(BD) - 2vec(AB)

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

A straight line L cuts the sides AB, AC, AD of a parallelogram ABCD at B_(1), C_(1), d_(1) respectively. If vec(AB_(1))=lambda_(1)vec(AB), vec(AD_(1))=lambda_(2)vec(AD) and vec(AC_(1))=lambda_(3)vec(AC), then (1)/(lambda_(3)) equal to

A straight line L cuts the sides AB, AC, AD of a parallelogram ABCD at B_(1), C_(1), d_(1) respectively. If vec(AB_(1))=lambda_(1)vec(AB), vec(AD_(1))=lambda_(2)vec(AD) and vec(AC_(1))=lambda_(3)vec(AC),

If ABCDEF is a regular hexagon, prove that vec(AC)+vec(AD)+vec(EA)+vec(FA)=3vec(AB)

If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + vec(FA)=

VIKAS GUPTA (BLACK BOOK) ENGLISH-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-5 : Subjective Type Problems
  1. Let B1,C1 and D1 are points on AB,AC and AD of the parallelogram ABCD,...

    Text Solution

    |

  2. A rod AB of length 2L and mass m is lying on a horizontal frictionless...

    Text Solution

    |

  3. If hata, hatb and hatc are non-coplanar unti vectors such that [hata ...

    Text Solution

    |

  4. Let OABC be a tetrahedron whose edges are of unit length. If vec OA = ...

    Text Solution

    |

  5. If A is the matrix [(1,-3),(-1,1)], then A-(1)/(3)A^(2)+(1)/(9)A^(3)……...

    Text Solution

    |

  6. A sequence of 2xx2 matrices {M(n)} is defined as follows M(n)=[((1)/(...

    Text Solution

    |

  7. Let |veca|=1, |vecb|=1 and |veca+vecb|=sqrt(3). If vec c be a vector ...

    Text Solution

    |

  8. Let vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a), whe...

    Text Solution

    |

  9. The plane denoted by P1 : 4x+7y+4z+81=0 is rotated through a right ang...

    Text Solution

    |

  10. ABCD is a regular tetrahedron, A is the origin and B lies on x-axis. A...

    Text Solution

    |

  11. A, B, C, D are four points in the space and satisfy |vec(AB)|=3, |vec(...

    Text Solution

    |

  12. Let OABC be a regular tetrahedron of edge length unity. Its volume be ...

    Text Solution

    |

  13. If veca and vecb are non zero, non collinear vectors and veca(1)=lamb...

    Text Solution

    |

  14. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  15. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  16. If a, b, c, l, m, n in R-{0} such that al+bm+cn=0, bl+cm+an=0, cl+am+b...

    Text Solution

    |

  17. Let vec ua n d vec v be unit vectors such that vec uxx vec v+ vec u=...

    Text Solution

    |