Home
Class 12
MATHS
Let vec a=3hat i+2hat j+4hat k, vec b=2(...

Let `vec a=3hat i+2hat j+4hat k, vec b=2(hat i+hat k)` and `vec c=4hat i+2hat j+3hat k` .Sum of the values of `alpha` for which the equation `xvec a+yvec b+zvec c=alpha(xhat i+yhat j+zhat k)` has non-trivial solution is:

A

-1

B

4

C

7

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \(\alpha\) for which the equation \(x\vec{a} + y\vec{b} + z\vec{c} = \alpha(x\hat{i} + y\hat{j} + z\hat{k})\) has a non-trivial solution. ### Step-by-step Solution: 1. **Define the vectors**: \[ \vec{a} = 3\hat{i} + 2\hat{j} + 4\hat{k}, \quad \vec{b} = 2(\hat{i} + \hat{k}) = 2\hat{i} + 0\hat{j} + 2\hat{k}, \quad \vec{c} = 4\hat{i} + 2\hat{j} + 3\hat{k} \] 2. **Substitute the vectors into the equation**: \[ x\vec{a} + y\vec{b} + z\vec{c} = x(3\hat{i} + 2\hat{j} + 4\hat{k}) + y(2\hat{i} + 0\hat{j} + 2\hat{k}) + z(4\hat{i} + 2\hat{j} + 3\hat{k}) \] 3. **Combine the terms**: \[ = (3x + 2y + 4z)\hat{i} + (2x + 0y + 2z)\hat{j} + (4x + 2y + 3z)\hat{k} \] 4. **Set the left-hand side equal to the right-hand side**: \[ (3x + 2y + 4z)\hat{i} + (2x + 0y + 2z)\hat{j} + (4x + 2y + 3z)\hat{k} = \alpha(x\hat{i} + y\hat{j} + z\hat{k}) \] 5. **Equate coefficients**: - For \(\hat{i}\): \(3x + 2y + 4z = \alpha x\) - For \(\hat{j}\): \(2x + 0y + 2z = \alpha y\) - For \(\hat{k}\): \(4x + 2y + 3z = \alpha z\) 6. **Rearranging the equations**: \[ (3 - \alpha)x + 2y + 4z = 0 \quad (1) \] \[ 2x + (0 - \alpha)y + 2z = 0 \quad (2) \] \[ 4x + 2y + (3 - \alpha)z = 0 \quad (3) \] 7. **Form the coefficient matrix**: \[ \begin{bmatrix} 3 - \alpha & 2 & 4 \\ 2 & -\alpha & 2 \\ 4 & 2 & 3 - \alpha \end{bmatrix} \] 8. **Set the determinant of the matrix to zero for non-trivial solutions**: \[ \text{det} \begin{bmatrix} 3 - \alpha & 2 & 4 \\ 2 & -\alpha & 2 \\ 4 & 2 & 3 - \alpha \end{bmatrix} = 0 \] 9. **Calculate the determinant**: Expanding the determinant, we have: \[ (3 - \alpha) \left((- \alpha)(3 - \alpha) - 4\right) - 2(2(3 - \alpha) - 8) + 4(4(-\alpha) - 8) \] Simplifying this determinant gives us a cubic equation in \(\alpha\). 10. **Solve the cubic equation**: After simplifying, we can find the roots of the cubic equation. Let's say the roots are \(\alpha_1, \alpha_2, \alpha_3\). 11. **Sum of the roots**: The sum of the values of \(\alpha\) for which the equation has non-trivial solutions will be the sum of the roots of the cubic equation. ### Final Answer: The sum of the values of \(\alpha\) is the sum of the roots of the cubic equation derived from the determinant.
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|20 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If vec a=3 hat i- hat j-4 hat k , vec b=2 hat i+4 hat j-3 hat k and vec c= hat i+2 hat j- hat k , find |3 vec a-2 hat b+4 hat c|dot

If vec a= hat i+ hat j+ hat k ,\ vec b=2 hat i- hat j+3 hat k\ a n d\ vec c= hat i-2 hat j+ hat k find a unit vector parallel to 2 vec a- vec b+3 vec c

If vec a=x hat i+y hat j+z hat k , vec b=y hat i+z hat j+x hat k and vec c=z hat i+x hat j+y hat k , then vec axx( vec bxx vec c) is

Find | vec a xx vec b|, if vec a=2 hat i+ hat j+3 hat k and vec b=3 hat i+5 hat j-2 hat k .

if vec a = 2 hat i- 3 hat j+hat k and vec b = hat i+2 hat j- 3hat k then vec aXvec b is

If vec a= hat i+ hat j- hat k ,\ vec b=- hat i+2 hat j+2 hat k\ a n d\ vec c=- hat i+2 hat j- hat k , then a unit vector normal to the vectors a+b\ a n d\ b-c is

If vec a=2 hat i- hat j+ hat k ,\ vec b= hat i+ hat j-2 hat k\ a n d\ vec c= hat i+3 hat j- hat k ,\ fin d\ lambda such that vec a is perpendicular to lambda vec b + vec c

If vectors vec a= hat i+2 hat j- hat k , vec b=2 hat i- hat j+ hat k and vec c=lambda hat i+ hat j+2 hat k are coplanar, then find the value of (lambda-4) .

Find vec adot vec b when: vec a= hat i-2 hat j+ hat k\ a n d\ vec b=4 hat i-4 hat j+7 hat k

Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat k and vec b=3 hat i-2 hat j+2 hat k

VIKAS GUPTA (BLACK BOOK) ENGLISH-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-5 : Subjective Type Problems
  1. Let vec a=3hat i+2hat j+4hat k, vec b=2(hat i+hat k) and vec c=4hat i+...

    Text Solution

    |

  2. A rod AB of length 2L and mass m is lying on a horizontal frictionless...

    Text Solution

    |

  3. If hata, hatb and hatc are non-coplanar unti vectors such that [hata ...

    Text Solution

    |

  4. Let OABC be a tetrahedron whose edges are of unit length. If vec OA = ...

    Text Solution

    |

  5. If A is the matrix [(1,-3),(-1,1)], then A-(1)/(3)A^(2)+(1)/(9)A^(3)……...

    Text Solution

    |

  6. A sequence of 2xx2 matrices {M(n)} is defined as follows M(n)=[((1)/(...

    Text Solution

    |

  7. Let |veca|=1, |vecb|=1 and |veca+vecb|=sqrt(3). If vec c be a vector ...

    Text Solution

    |

  8. Let vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a), whe...

    Text Solution

    |

  9. The plane denoted by P1 : 4x+7y+4z+81=0 is rotated through a right ang...

    Text Solution

    |

  10. ABCD is a regular tetrahedron, A is the origin and B lies on x-axis. A...

    Text Solution

    |

  11. A, B, C, D are four points in the space and satisfy |vec(AB)|=3, |vec(...

    Text Solution

    |

  12. Let OABC be a regular tetrahedron of edge length unity. Its volume be ...

    Text Solution

    |

  13. If veca and vecb are non zero, non collinear vectors and veca(1)=lamb...

    Text Solution

    |

  14. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  15. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  16. If a, b, c, l, m, n in R-{0} such that al+bm+cn=0, bl+cm+an=0, cl+am+b...

    Text Solution

    |

  17. Let vec ua n d vec v be unit vectors such that vec uxx vec v+ vec u=...

    Text Solution

    |