Home
Class 12
MATHS
If veca=hati+hatj+hatk, vecb=hati-hatj+h...

If `veca=hati+hatj+hatk, vecb=hati-hatj+hatk, vec c=hati+2hatj-hatk`, then the value of `|(veca*veca,veca*vecb, veca*vecc),(vecb*veca, vecb *vecb,vecb*vecc),(vec c*veca, vec c*vec b,vec c*vec c)|` is equal to :

A

2

B

4

C

16

D

64

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to calculate the determinant of the matrix formed by the dot products of the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). Let's break this down step by step. ### Step 1: Define the vectors Given: \[ \vec{a} = \hat{i} + \hat{j} + \hat{k} \] \[ \vec{b} = \hat{i} - \hat{j} + \hat{k} \] \[ \vec{c} = \hat{i} + 2\hat{j} - \hat{k} \] ### Step 2: Calculate the dot products 1. **Calculate \(\vec{a} \cdot \vec{a}\)**: \[ \vec{a} \cdot \vec{a} = 1^2 + 1^2 + 1^2 = 3 \] 2. **Calculate \(\vec{b} \cdot \vec{b}\)**: \[ \vec{b} \cdot \vec{b} = 1^2 + (-1)^2 + 1^2 = 3 \] 3. **Calculate \(\vec{c} \cdot \vec{c}\)**: \[ \vec{c} \cdot \vec{c} = 1^2 + 2^2 + (-1)^2 = 1 + 4 + 1 = 6 \] 4. **Calculate \(\vec{a} \cdot \vec{b}\)**: \[ \vec{a} \cdot \vec{b} = (1)(1) + (1)(-1) + (1)(1) = 1 - 1 + 1 = 1 \] 5. **Calculate \(\vec{a} \cdot \vec{c}\)**: \[ \vec{a} \cdot \vec{c} = (1)(1) + (1)(2) + (1)(-1) = 1 + 2 - 1 = 2 \] 6. **Calculate \(\vec{b} \cdot \vec{c}\)**: \[ \vec{b} \cdot \vec{c} = (1)(1) + (-1)(2) + (1)(-1) = 1 - 2 - 1 = -2 \] ### Step 3: Form the determinant matrix Now we can form the matrix using these dot products: \[ \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c} \end{vmatrix} = \begin{vmatrix} 3 & 1 & 2 \\ 1 & 3 & -2 \\ 2 & -2 & 6 \end{vmatrix} \] ### Step 4: Calculate the determinant Using the formula for the determinant of a 3x3 matrix: \[ \text{Det} = a(ei - fh) - b(di - fg) + c(dh - eg) \] where: \[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \] For our matrix: - \(a = 3\), \(b = 1\), \(c = 2\) - \(d = 1\), \(e = 3\), \(f = -2\) - \(g = 2\), \(h = -2\), \(i = 6\) Calculating: \[ \text{Det} = 3(3 \cdot 6 - (-2)(-2)) - 1(1 \cdot 6 - (-2)(2)) + 2(1 \cdot (-2) - 3 \cdot 2) \] \[ = 3(18 - 4) - 1(6 + 4) + 2(-2 - 6) \] \[ = 3(14) - 1(10) + 2(-8) \] \[ = 42 - 10 - 16 \] \[ = 42 - 26 = 16 \] ### Final Answer The value of the determinant is: \[ \boxed{16} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|20 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If veca=hati+hatj+hatk,hatb=hati-hatj+hatk,vecc=hati+2hatj-hatk , then find the value of |{:(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc):}|

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+2hatj-hatk, vecb=3hati-hatj-hatk and vecc=hati+2hatj-3hatk then verify that vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc .

If veca=hati+hatj+hatk, vecb=2hati-hatj and vecc=3hatj+hatk then verify the following: veca.(vecb+vecc)=veca.vecb+veca.vecc .

If vecaa=hati+2hatj+3hatk, vecb=2hati-hatj+hatk and vecc=hati+hatj-2hatk, verify that vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc.

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .

If veca=hati+hatj+hatk, vecb=2hati-hatj and vecc=3hatj+hatk then verify the following: (veca+vecb).(veca-vecb)=a^2-b^2 .

Given veca=xhati+yhatj+2hatk,vecb=hati-hatj+hatk , vecc=hati+2hatj, veca botvecb,veca.vecc=4 then find the value of [(veca, vecb, vecc)] .

VIKAS GUPTA (BLACK BOOK) ENGLISH-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-5 : Subjective Type Problems
  1. If veca=hati+hatj+hatk, vecb=hati-hatj+hatk, vec c=hati+2hatj-hatk, th...

    Text Solution

    |

  2. A rod AB of length 2L and mass m is lying on a horizontal frictionless...

    Text Solution

    |

  3. If hata, hatb and hatc are non-coplanar unti vectors such that [hata ...

    Text Solution

    |

  4. Let OABC be a tetrahedron whose edges are of unit length. If vec OA = ...

    Text Solution

    |

  5. If A is the matrix [(1,-3),(-1,1)], then A-(1)/(3)A^(2)+(1)/(9)A^(3)……...

    Text Solution

    |

  6. A sequence of 2xx2 matrices {M(n)} is defined as follows M(n)=[((1)/(...

    Text Solution

    |

  7. Let |veca|=1, |vecb|=1 and |veca+vecb|=sqrt(3). If vec c be a vector ...

    Text Solution

    |

  8. Let vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a), whe...

    Text Solution

    |

  9. The plane denoted by P1 : 4x+7y+4z+81=0 is rotated through a right ang...

    Text Solution

    |

  10. ABCD is a regular tetrahedron, A is the origin and B lies on x-axis. A...

    Text Solution

    |

  11. A, B, C, D are four points in the space and satisfy |vec(AB)|=3, |vec(...

    Text Solution

    |

  12. Let OABC be a regular tetrahedron of edge length unity. Its volume be ...

    Text Solution

    |

  13. If veca and vecb are non zero, non collinear vectors and veca(1)=lamb...

    Text Solution

    |

  14. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  15. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  16. If a, b, c, l, m, n in R-{0} such that al+bm+cn=0, bl+cm+an=0, cl+am+b...

    Text Solution

    |

  17. Let vec ua n d vec v be unit vectors such that vec uxx vec v+ vec u=...

    Text Solution

    |