Home
Class 12
MATHS
If veca=2hati+lambda hatj+3hatk, vecb=3...


If `veca=2hati+lambda hatj+3hatk, vecb=3hati+3hatj+5hatk, vec c=lambda hati+2hatj+2hatk` are linearly dependent vectors, then the number of possible values of `lambda` is :
i) 0
ii)1
iii)2
iv)More than 2

A

0

B

1

C

2

D

More than 2

Text Solution

AI Generated Solution

The correct Answer is:
To determine the number of possible values of \( \lambda \) such that the vectors \( \vec{a} = 2\hat{i} + \lambda \hat{j} + 3\hat{k} \), \( \vec{b} = 3\hat{i} + 3\hat{j} + 5\hat{k} \), and \( \vec{c} = \lambda \hat{i} + 2\hat{j} + 2\hat{k} \) are linearly dependent, we can follow these steps: ### Step 1: Set up the matrix We can represent the vectors as rows of a matrix \( M \): \[ M = \begin{bmatrix} 2 & \lambda & 3 \\ 3 & 3 & 5 \\ \lambda & 2 & 2 \end{bmatrix} \] ### Step 2: Calculate the determinant For the vectors to be linearly dependent, the determinant of the matrix \( M \) must be zero: \[ \text{det}(M) = 0 \] Calculating the determinant: \[ \text{det}(M) = 2 \begin{vmatrix} 3 & 5 \\ 2 & 2 \end{vmatrix} - \lambda \begin{vmatrix} 3 & 5 \\ \lambda & 2 \end{vmatrix} + 3 \begin{vmatrix} 3 & 3 \\ \lambda & 2 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 3 & 5 \\ 2 & 2 \end{vmatrix} = (3 \cdot 2) - (5 \cdot 2) = 6 - 10 = -4 \) 2. \( \begin{vmatrix} 3 & 5 \\ \lambda & 2 \end{vmatrix} = (3 \cdot 2) - (5 \cdot \lambda) = 6 - 5\lambda \) 3. \( \begin{vmatrix} 3 & 3 \\ \lambda & 2 \end{vmatrix} = (3 \cdot 2) - (3 \cdot \lambda) = 6 - 3\lambda \) Substituting these into the determinant: \[ \text{det}(M) = 2(-4) - \lambda(6 - 5\lambda) + 3(6 - 3\lambda) \] \[ = -8 - \lambda(6 - 5\lambda) + 18 - 9\lambda \] \[ = -8 + 18 - 6\lambda + 5\lambda^2 - 9\lambda \] \[ = 10 + 5\lambda^2 - 15\lambda \] ### Step 3: Set the determinant to zero Now, we set the determinant to zero: \[ 5\lambda^2 - 15\lambda + 10 = 0 \] ### Step 4: Simplify the equation Dividing the entire equation by 5: \[ \lambda^2 - 3\lambda + 2 = 0 \] ### Step 5: Factor the quadratic equation Factoring the quadratic: \[ (\lambda - 2)(\lambda - 1) = 0 \] ### Step 6: Solve for \( \lambda \) Setting each factor to zero gives us: \[ \lambda - 2 = 0 \quad \Rightarrow \quad \lambda = 2 \] \[ \lambda - 1 = 0 \quad \Rightarrow \quad \lambda = 1 \] ### Conclusion The possible values of \( \lambda \) are \( 1 \) and \( 2 \). Therefore, the number of possible values of \( \lambda \) is **2**.
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|20 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of lamda .

If vec a =hati +3hatj , vecb = 2hati -hatj - hatk and vec c =mhati +7 hatj +3hatk are coplanar then find the value of m.

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

Show that the vectors hati-3hatj+2hatk,2hati-4hatj-hatk and 3hati+2hatj-hatk and linearly independent.

If the vectors veca=hati-hatj+2hatk.vecb=2hati+4hatj+hatk and veccc=lambdahati+hatj+muhatk are mutually orthogonal, then (lambda, mu)

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3c .

If vector vec a = hati + hatj + hatk , vecb = 4 hati + 3 hatj + 4 hatk and vec c = hati + alpha hatj + beta hatk are linearly dependent and | vec c | = sqrt3 , then value of | alpha | + | beta | is

VIKAS GUPTA (BLACK BOOK) ENGLISH-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-5 : Subjective Type Problems
  1. If veca=2hati+lambda hatj+3hatk, vecb=3hati+3hatj+5hatk, vec c=lambda...

    Text Solution

    |

  2. A rod AB of length 2L and mass m is lying on a horizontal frictionless...

    Text Solution

    |

  3. If hata, hatb and hatc are non-coplanar unti vectors such that [hata ...

    Text Solution

    |

  4. Let OABC be a tetrahedron whose edges are of unit length. If vec OA = ...

    Text Solution

    |

  5. If A is the matrix [(1,-3),(-1,1)], then A-(1)/(3)A^(2)+(1)/(9)A^(3)……...

    Text Solution

    |

  6. A sequence of 2xx2 matrices {M(n)} is defined as follows M(n)=[((1)/(...

    Text Solution

    |

  7. Let |veca|=1, |vecb|=1 and |veca+vecb|=sqrt(3). If vec c be a vector ...

    Text Solution

    |

  8. Let vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a), whe...

    Text Solution

    |

  9. The plane denoted by P1 : 4x+7y+4z+81=0 is rotated through a right ang...

    Text Solution

    |

  10. ABCD is a regular tetrahedron, A is the origin and B lies on x-axis. A...

    Text Solution

    |

  11. A, B, C, D are four points in the space and satisfy |vec(AB)|=3, |vec(...

    Text Solution

    |

  12. Let OABC be a regular tetrahedron of edge length unity. Its volume be ...

    Text Solution

    |

  13. If veca and vecb are non zero, non collinear vectors and veca(1)=lamb...

    Text Solution

    |

  14. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  15. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  16. If a, b, c, l, m, n in R-{0} such that al+bm+cn=0, bl+cm+an=0, cl+am+b...

    Text Solution

    |

  17. Let vec ua n d vec v be unit vectors such that vec uxx vec v+ vec u=...

    Text Solution

    |