Home
Class 12
MATHS
The scalar triple product [(veca+vecb-ve...

The scalar triple product `[(veca+vecb-vecc,vecb+vecc-veca,vecc+veca-vecb)]` is equal to

A

0

B

`[vecavecb vec c]`

C

`2[veca vecb vec c]`

D

`4[veca vecb vec c]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the scalar triple product \([( \vec{a} + \vec{b} - \vec{c}, \vec{b} + \vec{c} - \vec{a}, \vec{c} + \vec{a} - \vec{b})]\), we will follow these steps: ### Step 1: Write the expression for the scalar triple product The scalar triple product of vectors \(\vec{u}\), \(\vec{v}\), and \(\vec{w}\) is given by the determinant: \[ \vec{u} \cdot (\vec{v} \times \vec{w}) \] In our case, we have: \[ \vec{u} = \vec{a} + \vec{b} - \vec{c}, \quad \vec{v} = \vec{b} + \vec{c} - \vec{a}, \quad \vec{w} = \vec{c} + \vec{a} - \vec{b} \] ### Step 2: Calculate \(\vec{v} \times \vec{w}\) We first need to compute the cross product \(\vec{v} \times \vec{w}\): \[ \vec{v} = \vec{b} + \vec{c} - \vec{a} \] \[ \vec{w} = \vec{c} + \vec{a} - \vec{b} \] Now, we can use the distributive property of the cross product: \[ \vec{v} \times \vec{w} = (\vec{b} + \vec{c} - \vec{a}) \times (\vec{c} + \vec{a} - \vec{b}) \] Expanding this gives: \[ = \vec{b} \times \vec{c} + \vec{b} \times \vec{a} - \vec{b} \times \vec{b} + \vec{c} \times \vec{c} + \vec{c} \times \vec{a} - \vec{c} \times \vec{b} - \vec{a} \times \vec{c} - \vec{a} \times \vec{a} + \vec{a} \times \vec{b} \] Since the cross product of any vector with itself is zero, we have: \[ = \vec{b} \times \vec{c} + \vec{c} \times \vec{a} - \vec{c} \times \vec{b} - \vec{a} \times \vec{c} + \vec{a} \times \vec{b} \] ### Step 3: Simplify the expression Using the property \(\vec{x} \times \vec{y} = -(\vec{y} \times \vec{x})\), we can simplify: \[ = \vec{b} \times \vec{c} + \vec{c} \times \vec{a} - \vec{b} \times \vec{c} - \vec{a} \times \vec{c} + \vec{a} \times \vec{b} \] This results in: \[ = \vec{a} \times \vec{b} - \vec{a} \times \vec{c} \] ### Step 4: Calculate \(\vec{u} \cdot (\vec{v} \times \vec{w})\) Now we need to calculate: \[ \vec{u} \cdot (\vec{v} \times \vec{w}) = (\vec{a} + \vec{b} - \vec{c}) \cdot (\vec{a} \times \vec{b} - \vec{a} \times \vec{c}) \] Distributing the dot product: \[ = \vec{a} \cdot (\vec{a} \times \vec{b}) + \vec{b} \cdot (\vec{a} \times \vec{b}) - \vec{c} \cdot (\vec{a} \times \vec{b}) - \vec{a} \cdot (\vec{a} \times \vec{c}) - \vec{b} \cdot (\vec{a} \times \vec{c}) + \vec{c} \cdot (\vec{a} \times \vec{c}) \] Using the property that the dot product of a vector with a cross product involving itself is zero: \[ = 0 + 0 - \vec{c} \cdot (\vec{a} \times \vec{b}) - 0 - \vec{b} \cdot (\vec{a} \times \vec{c}) + 0 \] Thus, we have: \[ = -(\vec{c} \cdot (\vec{a} \times \vec{b}) + \vec{b} \cdot (\vec{a} \times \vec{c})) \] ### Step 5: Final result The scalar triple product simplifies to: \[ = 2(\vec{a} \cdot (\vec{b} \times \vec{c})) \] Thus, the final answer is: \[ = 2 \cdot [\vec{a}, \vec{b}, \vec{c}] \] ### Conclusion The scalar triple product \([( \vec{a} + \vec{b} - \vec{c}, \vec{b} + \vec{c} - \vec{a}, \vec{c} + \vec{a} - \vec{b})]\) is equal to \(2[\vec{a}, \vec{b}, \vec{c}]\).
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|20 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca ,vecb and vecc are three mutually orthogonal unit vectors , then the triple product [(veca+vecb+vecc,veca+vecb, vecb +vecc)] equals

For three non - zero vectors veca, vecb and vecc , if [(veca, vecb and vecc)]=4 , then [vecaxx(vecb+2vecc)vecbxx(vecc-3veca)vecc xx(3veca+vecb)] is equal to

veca.(vecbxxvecc) is called the scalar triple product of veca,vecb,vecc and is denoted by [veca vecb vecc] . If veca,vecb,vecc are coplanar then [veca+vecb vecb+vecc vecc+veca ] = (A) 1 (B) -1 (C) 0 (D) none of these

veca.(vecbxxvecc) is called the scalar triple product of veca,vecb,vecc and is denoted by [veca vecb vecc]. If veca, vecb, vecc are cyclically permuted the vaslue of the scalar triple product remasin the same. In a scalar triple product, interchange of two vectors changes the sign of scalar triple product but not the magnitude. in scalar triple product the the position of the dot and cross can be interchanged privided the cyclic order of vectors is preserved. Also the scaslar triple product is ZERO if any two vectors are equal or parallel. (A) [vecb-vecc vecc-veca veca-vecb] (B) [veca vecb vecc] (C) 0 (D) none of these

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

Prove that [veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

Prove that [veca+vecb,vecb+vecc,vecc+veca]=2[veca vecb vecc]

VIKAS GUPTA (BLACK BOOK) ENGLISH-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-5 : Subjective Type Problems
  1. The scalar triple product [(veca+vecb-vecc,vecb+vecc-veca,vecc+veca-ve...

    Text Solution

    |

  2. A rod AB of length 2L and mass m is lying on a horizontal frictionless...

    Text Solution

    |

  3. If hata, hatb and hatc are non-coplanar unti vectors such that [hata ...

    Text Solution

    |

  4. Let OABC be a tetrahedron whose edges are of unit length. If vec OA = ...

    Text Solution

    |

  5. If A is the matrix [(1,-3),(-1,1)], then A-(1)/(3)A^(2)+(1)/(9)A^(3)……...

    Text Solution

    |

  6. A sequence of 2xx2 matrices {M(n)} is defined as follows M(n)=[((1)/(...

    Text Solution

    |

  7. Let |veca|=1, |vecb|=1 and |veca+vecb|=sqrt(3). If vec c be a vector ...

    Text Solution

    |

  8. Let vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a), whe...

    Text Solution

    |

  9. The plane denoted by P1 : 4x+7y+4z+81=0 is rotated through a right ang...

    Text Solution

    |

  10. ABCD is a regular tetrahedron, A is the origin and B lies on x-axis. A...

    Text Solution

    |

  11. A, B, C, D are four points in the space and satisfy |vec(AB)|=3, |vec(...

    Text Solution

    |

  12. Let OABC be a regular tetrahedron of edge length unity. Its volume be ...

    Text Solution

    |

  13. If veca and vecb are non zero, non collinear vectors and veca(1)=lamb...

    Text Solution

    |

  14. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  15. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  16. If a, b, c, l, m, n in R-{0} such that al+bm+cn=0, bl+cm+an=0, cl+am+b...

    Text Solution

    |

  17. Let vec ua n d vec v be unit vectors such that vec uxx vec v+ vec u=...

    Text Solution

    |