Home
Class 12
MATHS
Let overset(to)(a(r))=x(r )hat(i)+y(r )h...

Let `overset(to)(a_(r))=x_(r )hat(i)+y_(r )hat(j)+z_(r )hat(k),r=1,2,3` three mutually prependicular unit vectors then the value of `|{:(x_(1),,-x_(2),,x_(3)),(y_(1),,y_(2) ,,y_(3)),(z_(1),,z_(2),,z_(3)):}|` is equal to

A

0

B

`pm1`

C

`pm2`

D

`pm4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the determinant given by: \[ D = \begin{vmatrix} x_1 & -x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} \] where \( \overset{\to}{a_r} = x_r \hat{i} + y_r \hat{j} + z_r \hat{k} \) for \( r = 1, 2, 3 \) represents three mutually perpendicular unit vectors. ### Step 1: Write the determinant We can express the determinant \( D \) as follows: \[ D = \begin{vmatrix} x_1 & -x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} \] ### Step 2: Expand the determinant Using the determinant expansion formula, we can expand \( D \): \[ D = x_1 \begin{vmatrix} y_2 & y_3 \\ z_2 & z_3 \end{vmatrix} - (-x_2) \begin{vmatrix} y_1 & y_3 \\ z_1 & z_3 \end{vmatrix} + x_3 \begin{vmatrix} y_1 & y_2 \\ z_1 & z_2 \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants Calculating the 2x2 determinants: 1. \( \begin{vmatrix} y_2 & y_3 \\ z_2 & z_3 \end{vmatrix} = y_2 z_3 - y_3 z_2 \) 2. \( \begin{vmatrix} y_1 & y_3 \\ z_1 & z_3 \end{vmatrix} = y_1 z_3 - y_3 z_1 \) 3. \( \begin{vmatrix} y_1 & y_2 \\ z_1 & z_2 \end{vmatrix} = y_1 z_2 - y_2 z_1 \) ### Step 4: Substitute back into the determinant Substituting these back into our expression for \( D \): \[ D = x_1 (y_2 z_3 - y_3 z_2) + x_2 (y_1 z_3 - y_3 z_1) + x_3 (y_1 z_2 - y_2 z_1) \] ### Step 5: Recognize the structure Notice that the expression for \( D \) is the scalar triple product of the vectors \( \overset{\to}{a_1}, \overset{\to}{a_2}, \overset{\to}{a_3} \). Since these vectors are mutually perpendicular unit vectors, the scalar triple product equals the volume of the parallelepiped formed by these vectors, which is 1 (since the volume of a unit cube is 1). ### Step 6: Conclusion Thus, the value of the determinant \( D \) is: \[ D = 1 \] ### Final Answer The value of the determinant is \( \pm 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|20 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

Let vec a_r=x_r hat i+y_r hat j+z_r hat k ,r=1,2,3 be three mutually perpendicular unit vectors, then the value of |[x_1,x_2,x_3],[y_1,y_2,y_3],[z_1,z_2,z_3]| is equal to a. 0 b. +-1 c. +-2 d. none of these

Let overset(to)(a) =a_(1) hat(i) + a_(2) hat(j) + a_(3) hat(k) , overset(to)(b) = b_(1) hat(i) +b_(2) hat(j) +b_(3) hat(k) " and " overset(to)(c) = c_(1) hat(i) +c_(2) hat(j) + c_(3) hat(k) be three non- zero vectors such that overset(to)(c ) is a unit vectors perpendicular to both the vectors overset(to)(a ) and overset(to)(b) . If the angle between overset(to)(a) " and " overset(to)(b) is (pi)/(6) then |{:(a_(1),,a_(2),,a_(3)),(b_(1),,b_(2),,b_(3)),(c_(1),,c_(2),,c_(3)):}|^2 is equal to

|{:(.^(x)C_(r),,.^(x)C_(r+1),,.^(x)C_(r+2)),(.^(y)C_(r),,.^(y)C_(r+1),,.^(y)C_(r+2)),(.^(z)C_(r),,.^(z)C_(r+1),,.^(z)C_(r+2)):}| is equal to

If vec(E)=2x^(2) hat(i)-3y^(2) hat(j) , then V (x, y, z)

If the vectors hat(i) - 2x hat(j) + 3 y hat(k) and hat(i) +2x hat(j) - y hat(k) are perpendicular, then the locus of (x,y) is

(r*hat(i))^(2)+(r*hat(j))^(2)+(r*hat(k))^(2) is equal to

If vec a=x hat i+2 hat j-z hat k\ and vec b=3 hat i-y hat j+ hat k are two equal vectors, then write the value of x+y+zdot

If vec a=x hat i+2 hat j-\ z hat k and vec b=3 hat i-\ y hat j+ hat k are two equal vectors, then write the value of x+y+zdot

If the planes overset(to)( r) (2 hat(i) - lambda (j) + 3 hat(k) ) = 0 and overset(to)( r) ( lambda (i) + 5 hat(j) - hat(k) )=5 are perpendicular to each other, then the value of lambda is

Let a=xhati+12hatj-hatk,b=2hati+2xhatj+hatk and c=hati+hatk . If b,c,a in that order form a left handed system, then find the value of x. [x_(1)a+y_(1)b+z_(1)c,x_(2)a+y_(2)b+z_(2)c,x_(3)a+y_(3)b+z_(3)c] =|(x_(1),y_(1),z_(1)),(x_(2),y_(2),z_(2)),(x_(3),y_(3),z_(3))|[abc] .

VIKAS GUPTA (BLACK BOOK) ENGLISH-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-5 : Subjective Type Problems
  1. Let overset(to)(a(r))=x(r )hat(i)+y(r )hat(j)+z(r )hat(k),r=1,2,3 thre...

    Text Solution

    |

  2. A rod AB of length 2L and mass m is lying on a horizontal frictionless...

    Text Solution

    |

  3. If hata, hatb and hatc are non-coplanar unti vectors such that [hata ...

    Text Solution

    |

  4. Let OABC be a tetrahedron whose edges are of unit length. If vec OA = ...

    Text Solution

    |

  5. If A is the matrix [(1,-3),(-1,1)], then A-(1)/(3)A^(2)+(1)/(9)A^(3)……...

    Text Solution

    |

  6. A sequence of 2xx2 matrices {M(n)} is defined as follows M(n)=[((1)/(...

    Text Solution

    |

  7. Let |veca|=1, |vecb|=1 and |veca+vecb|=sqrt(3). If vec c be a vector ...

    Text Solution

    |

  8. Let vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a), whe...

    Text Solution

    |

  9. The plane denoted by P1 : 4x+7y+4z+81=0 is rotated through a right ang...

    Text Solution

    |

  10. ABCD is a regular tetrahedron, A is the origin and B lies on x-axis. A...

    Text Solution

    |

  11. A, B, C, D are four points in the space and satisfy |vec(AB)|=3, |vec(...

    Text Solution

    |

  12. Let OABC be a regular tetrahedron of edge length unity. Its volume be ...

    Text Solution

    |

  13. If veca and vecb are non zero, non collinear vectors and veca(1)=lamb...

    Text Solution

    |

  14. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  15. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  16. If a, b, c, l, m, n in R-{0} such that al+bm+cn=0, bl+cm+an=0, cl+am+b...

    Text Solution

    |

  17. Let vec ua n d vec v be unit vectors such that vec uxx vec v+ vec u=...

    Text Solution

    |