Home
Class 12
MATHS
If veca,vecb and vecc are three non copl...

If `veca,vecb and vecc` are three non coplanar vectors and `vecr` is any vector in space, then `(vecxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)=` (A) `[veca vecb vecc]` (B) `2[veca vecb vecc]vecr` (C) `3[veca vecb vecc]vecr` (D) `4[veca vecb vecc]vecr`

A

`[veca vecb vec c]vecr`

B

`2[veca vecb vec c]vecr`

C

`4[veca vecb vec c]vecr`

D

`vec0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ (\vec{a} \times \vec{b}) + (\vec{r} \times \vec{c}) + (\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a}) + (\vec{c} \times \vec{a}) \times (\vec{r} \times \vec{b}) \] where \(\vec{a}, \vec{b}, \vec{c}\) are non-coplanar vectors and \(\vec{r}\) is any vector in space. ### Step 1: Understanding the Cross Products First, we note that the cross product of two vectors results in a vector that is perpendicular to the plane formed by the two original vectors. ### Step 2: Simplifying the Expression We can rewrite the expression using the properties of the cross product and the scalar triple product. The scalar triple product \([\vec{a}, \vec{b}, \vec{c}]\) gives the volume of the parallelepiped formed by the vectors \(\vec{a}, \vec{b}, \vec{c}\). ### Step 3: Evaluate Each Term 1. **First Term**: \(\vec{a} \times \vec{b}\) is straightforward. 2. **Second Term**: \(\vec{r} \times \vec{c}\) is also straightforward. 3. **Third Term**: For \((\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a})\), we can use the vector triple product identity: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] Applying this, we get: \[ (\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a}) = (\vec{b} \cdot \vec{a}) \vec{r} - (\vec{r} \cdot \vec{b}) \vec{c} \] 4. **Fourth Term**: Similarly, for \((\vec{c} \times \vec{a}) \times (\vec{r} \times \vec{b})\), we apply the same identity: \[ (\vec{c} \times \vec{a}) \times (\vec{r} \times \vec{b}) = (\vec{c} \cdot \vec{b}) \vec{r} - (\vec{r} \cdot \vec{c}) \vec{a} \] ### Step 4: Combine All Terms Now, we combine all the terms: \[ \vec{a} \times \vec{b} + \vec{r} \times \vec{c} + \left((\vec{b} \cdot \vec{a}) \vec{r} - (\vec{r} \cdot \vec{b}) \vec{c}\right) + \left((\vec{c} \cdot \vec{b}) \vec{r} - (\vec{r} \cdot \vec{c}) \vec{a}\right) \] ### Step 5: Factor Out Common Terms We can factor out \(\vec{r}\) from the terms: \[ = \vec{a} \times \vec{b} + \vec{r} \times \vec{c} + \left((\vec{b} \cdot \vec{a} + \vec{c} \cdot \vec{b}) \vec{r} - (\vec{r} \cdot \vec{b}) \vec{c} - (\vec{r} \cdot \vec{c}) \vec{a}\right) \] ### Step 6: Recognizing the Scalar Triple Product The scalar triple product \([\vec{a}, \vec{b}, \vec{c}]\) can be represented in terms of the dot products we have. The final expression will yield a multiple of \([\vec{a}, \vec{b}, \vec{c}]\) times \(\vec{r}\). ### Conclusion After simplifying and combining all terms, we find that the expression evaluates to: \[ 3[\vec{a}, \vec{b}, \vec{c}] \vec{r} \] Thus, the answer is: **(C) \(3[\vec{a}, \vec{b}, \vec{c}] \vec{r}\)**.
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|20 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecaxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)=

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecaxxvecb)xx(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)=

If veca,vecb and vecc are non coplnar and non zero vectors and vecr is any vector in space then [vecc vecr vecb]veca+[veca vecr vecc] vecb+[vecb vecr veca]c= (A) [veca vecb vecc] (B) [veca vecb vecc]vecr (C) vecr/([veca vecb vecc]) (D) vecr.(veca+vecb+vecc)

vec a , vec ba n d vec c are three non-coplanar ,non-zero vectors and vec r is any vector in space, then ( veca × vecb )×( vecr × vecc )+( vecb × vecc )×( vecr × veca )+( vecc × veca )×( vecr × vecb ) is equal to

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to

veca , vecb and vecc are three non-coplanar vectors and vecr . Is any arbitrary vector. Prove that [vecbvecc vecr]veca+[vecc veca vecr]vecb+[vecavecbvecr]vecc=[veca vecb vecc]vecr .

Statement 1: Let vecr be any vector in space. Then, vecr=(vecr.hati)hati+(vecr.hatj)hatj+(vecr.hatk)hatk Statement 2: If veca, vecb, vecc are three non-coplanar vectors and vecr is any vector in space then vecr={([(vecr, vecb, vecc)])/([(veca, vecb, vecc)])}veca+{([(vecr, vecc, veca)])/([(veca, vecb, vecc)])}vecb+{([(vecr, veca, vecb)])/([(veca, vecb, vecc)])}vecc

If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr satisfying vecr.veca=vecr.vecb=vecr.vecc=1 , is

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

VIKAS GUPTA (BLACK BOOK) ENGLISH-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-5 : Subjective Type Problems
  1. If veca,vecb and vecc are three non coplanar vectors and vecr is any v...

    Text Solution

    |

  2. A rod AB of length 2L and mass m is lying on a horizontal frictionless...

    Text Solution

    |

  3. If hata, hatb and hatc are non-coplanar unti vectors such that [hata ...

    Text Solution

    |

  4. Let OABC be a tetrahedron whose edges are of unit length. If vec OA = ...

    Text Solution

    |

  5. If A is the matrix [(1,-3),(-1,1)], then A-(1)/(3)A^(2)+(1)/(9)A^(3)……...

    Text Solution

    |

  6. A sequence of 2xx2 matrices {M(n)} is defined as follows M(n)=[((1)/(...

    Text Solution

    |

  7. Let |veca|=1, |vecb|=1 and |veca+vecb|=sqrt(3). If vec c be a vector ...

    Text Solution

    |

  8. Let vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a), whe...

    Text Solution

    |

  9. The plane denoted by P1 : 4x+7y+4z+81=0 is rotated through a right ang...

    Text Solution

    |

  10. ABCD is a regular tetrahedron, A is the origin and B lies on x-axis. A...

    Text Solution

    |

  11. A, B, C, D are four points in the space and satisfy |vec(AB)|=3, |vec(...

    Text Solution

    |

  12. Let OABC be a regular tetrahedron of edge length unity. Its volume be ...

    Text Solution

    |

  13. If veca and vecb are non zero, non collinear vectors and veca(1)=lamb...

    Text Solution

    |

  14. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  15. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  16. If a, b, c, l, m, n in R-{0} such that al+bm+cn=0, bl+cm+an=0, cl+am+b...

    Text Solution

    |

  17. Let vec ua n d vec v be unit vectors such that vec uxx vec v+ vec u=...

    Text Solution

    |