Home
Class 12
MATHS
If vec a and vec b are unit vectors and...

If `vec a and vec b` are unit vectors and `vec c` is such that `vec c` is such that `vec c = vec c = vec a xx vec c + vec b` then maximum value of `[veca vec b vec c]`is

A

1

B

`(1)/(2)`

C

2

D

`(3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of the scalar triple product \([ \vec{a}, \vec{b}, \vec{c} ]\) given the conditions in the question. ### Step-by-Step Solution: 1. **Understanding the Given Information**: We have two unit vectors \(\vec{a}\) and \(\vec{b}\), and a vector \(\vec{c}\) defined by the equation: \[ \vec{c} = \vec{a} \times \vec{c} + \vec{b} \] This implies that \(\vec{c}\) is dependent on itself and the vectors \(\vec{a}\) and \(\vec{b}\). 2. **Rearranging the Equation**: Rearranging the equation for \(\vec{c}\): \[ \vec{c} - \vec{a} \times \vec{c} = \vec{b} \] This can be rewritten as: \[ \vec{c} (I - \vec{a} \times) = \vec{b} \] where \(I\) is the identity operator. 3. **Taking Dot Products**: We take the dot product of \(\vec{c}\) with both sides: \[ \vec{c} \cdot \vec{c} - \vec{c} \cdot (\vec{a} \times \vec{c}) = \vec{c} \cdot \vec{b} \] Since \(\vec{c} \cdot (\vec{a} \times \vec{c}) = 0\) (the dot product of a vector with a vector perpendicular to it is zero), we have: \[ \|\vec{c}\|^2 = \vec{c} \cdot \vec{b} \] 4. **Finding the Maximum Value of the Scalar Triple Product**: The scalar triple product \([ \vec{a}, \vec{b}, \vec{c} ]\) can be expressed as: \[ [ \vec{a}, \vec{b}, \vec{c} ] = \vec{a} \cdot (\vec{b} \times \vec{c}) \] To maximize this expression, we need to consider the geometric interpretation. The maximum value occurs when \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are mutually perpendicular. 5. **Using the Properties of Unit Vectors**: Since \(\vec{a}\) and \(\vec{b}\) are unit vectors, the maximum value of the scalar triple product is given by: \[ \max |[ \vec{a}, \vec{b}, \vec{c} ]| = |\vec{a}| |\vec{b}| |\vec{c}| \sin(\theta) \] where \(\theta\) is the angle between \(\vec{b}\) and \(\vec{c}\). The maximum occurs when \(\theta = 90^\circ\). 6. **Conclusion**: Since \(\vec{a}\) and \(\vec{b}\) are unit vectors and \(\vec{c}\) can also be a unit vector under the right conditions, the maximum value of the scalar triple product is: \[ \max |[ \vec{a}, \vec{b}, \vec{c} ]| = 1 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|20 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If hata, hatb are unit vectors and vec c is such that vec c=veca xx vec c +vecb , then the maximum value of [veca vecb vec c] is :

If vec a , vec b , and vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c| .

If vec a ,\ vec b ,\ vec c are three vectors such that vec a. vec b= vec a.\ vec c and vec a\ xx\ vec b= vec a\ xx\ vec c ,\ vec a\ !=0 , then show that vec b= vec c .

If vec a , vec b , vec c are unit vectors such that vec a. vec b=0= vec a. vec c and the angle between vec b and vec c is pi/3, then find the value of | vec axx vec b- vec axx vec c| .

If vec a ,\ vec b ,\ vec c are three unit vecrtors such that vec axx vec b= vec c ,\ vec bxx vec c= vec a ,\ vec cxx vec a= vec b Show that vec a ,\ vec b ,\ vec c form an orthonormal right handed triad of unit vectors.

vec a , vec b , vec c are three vectors such that |vec a | = 5 | vec b | =8, |vec c | = 3 if vec a + vec b + vec c = 8 hati+ 6hatj , find the value of vec a , vec b +vec b .vec c + vec c .vec a

Prove that [ vec a , vec b , vec c+ vec d]=[ vec a , vec b , vec c]+[ vec a , vec b , vec d]

If vec a ,\ vec b ,\ vec c are three vectors such that vec adot\ vec b= vec adot\ vec c and vec a\ x\ vec b= vec a\ x\ vec c ,\ vec a\ !=0 , then show that vec b= vec c .

If vec a , vec b , vec c are unit vectors such that vec a+ vec b+ vec c= vec0, then write the value of vec a . vec b+ vec b . vec c+ vec c . vec a

If veca , vec b , vec c are three vectors such that veca+ vec b+ vec c= vec0 , then prove that vec axx vec b= vec bxx vec c= vec cxx vec a

VIKAS GUPTA (BLACK BOOK) ENGLISH-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-5 : Subjective Type Problems
  1. If vec a and vec b are unit vectors and vec c is such that vec c is s...

    Text Solution

    |

  2. A rod AB of length 2L and mass m is lying on a horizontal frictionless...

    Text Solution

    |

  3. If hata, hatb and hatc are non-coplanar unti vectors such that [hata ...

    Text Solution

    |

  4. Let OABC be a tetrahedron whose edges are of unit length. If vec OA = ...

    Text Solution

    |

  5. If A is the matrix [(1,-3),(-1,1)], then A-(1)/(3)A^(2)+(1)/(9)A^(3)……...

    Text Solution

    |

  6. A sequence of 2xx2 matrices {M(n)} is defined as follows M(n)=[((1)/(...

    Text Solution

    |

  7. Let |veca|=1, |vecb|=1 and |veca+vecb|=sqrt(3). If vec c be a vector ...

    Text Solution

    |

  8. Let vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a), whe...

    Text Solution

    |

  9. The plane denoted by P1 : 4x+7y+4z+81=0 is rotated through a right ang...

    Text Solution

    |

  10. ABCD is a regular tetrahedron, A is the origin and B lies on x-axis. A...

    Text Solution

    |

  11. A, B, C, D are four points in the space and satisfy |vec(AB)|=3, |vec(...

    Text Solution

    |

  12. Let OABC be a regular tetrahedron of edge length unity. Its volume be ...

    Text Solution

    |

  13. If veca and vecb are non zero, non collinear vectors and veca(1)=lamb...

    Text Solution

    |

  14. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  15. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  16. If a, b, c, l, m, n in R-{0} such that al+bm+cn=0, bl+cm+an=0, cl+am+b...

    Text Solution

    |

  17. Let vec ua n d vec v be unit vectors such that vec uxx vec v+ vec u=...

    Text Solution

    |