Home
Class 12
MATHS
Conside the matrices A=[(1,2,3),(4,1,2),...

Conside the matrices `A=[(1,2,3),(4,1,2),(1,-1,1)]` `B=[(2,1,3),(4,1,-1), (2,2,3)]` `C=[(14),(12),(2)]` `D=[(13),(11),(14)]`. Now `x=[(x),(y),(z)]`is such that solutions of equation `AX=C` and `BX=D` represent two points L andM respectively in 3 dimensional space. If `L'` and `M'` are hre reflections of L and M in the plane x+y+z=9 then find coordinates of L,M,L',M'

A

(3, 4, 2)

B

(5, 3, 4)

C

(7, 2, 3)

D

(1, 5, 6)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the coordinates of points L and M from the equations \( AX = C \) and \( BX = D \), and then find their reflections \( L' \) and \( M' \) in the plane defined by \( x + y + z = 9 \). ### Step 1: Solve \( AX = C \) Given: \[ A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 1 & 2 \\ 1 & -1 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 14 \\ 12 \\ 2 \end{pmatrix} \] We need to solve the system of equations represented by \( AX = C \). 1. Write the augmented matrix: \[ \begin{pmatrix} 1 & 2 & 3 & | & 14 \\ 4 & 1 & 2 & | & 12 \\ 1 & -1 & 1 & | & 2 \end{pmatrix} \] 2. Perform row operations to reduce this matrix to row echelon form. - Replace \( R_2 \) with \( R_2 - 4R_1 \): \[ R_2 = (4 - 4 \cdot 1, 1 - 4 \cdot 2, 2 - 4 \cdot 3 | 12 - 4 \cdot 14) = (0, -7, -10 | -40) \] - Replace \( R_3 \) with \( R_3 - R_1 \): \[ R_3 = (1 - 1, -1 - 2, 1 - 3 | 2 - 14) = (0, -3, -2 | -12) \] The matrix becomes: \[ \begin{pmatrix} 1 & 2 & 3 & | & 14 \\ 0 & -7 & -10 & | & -40 \\ 0 & -3 & -2 & | & -12 \end{pmatrix} \] 3. Now, simplify \( R_2 \) and \( R_3 \): - Divide \( R_2 \) by -7: \[ R_2 = (0, 1, \frac{10}{7} | \frac{40}{7}) \] - Replace \( R_3 \) with \( R_3 + 3R_2 \): \[ R_3 = (0, 0, \frac{16}{7} | \frac{12 + 120/7}{7}) = (0, 0, \frac{16}{7} | \frac{84}{7}) = (0, 0, 1 | 5) \] 4. The final augmented matrix is: \[ \begin{pmatrix} 1 & 2 & 3 & | & 14 \\ 0 & 1 & \frac{10}{7} & | & \frac{40}{7} \\ 0 & 0 & 1 & | & 5 \end{pmatrix} \] 5. Back-substituting to find \( x, y, z \): - From \( z = 5 \) - Substitute \( z \) into \( R_2 \): \[ y + \frac{10}{7} \cdot 5 = \frac{40}{7} \implies y + \frac{50}{7} = \frac{40}{7} \implies y = -\frac{10}{7} \] - Substitute \( y \) and \( z \) into \( R_1 \): \[ x + 2(-\frac{10}{7}) + 3(5) = 14 \implies x - \frac{20}{7} + 15 = 14 \implies x = 14 - 15 + \frac{20}{7} = \frac{20}{7} - 1 = \frac{13}{7} \] Thus, the coordinates of point \( L \) are: \[ L = \left( \frac{13}{7}, -\frac{10}{7}, 5 \right) \] ### Step 2: Solve \( BX = D \) Given: \[ B = \begin{pmatrix} 2 & 1 & 3 \\ 4 & 1 & -1 \\ 2 & 2 & 3 \end{pmatrix}, \quad D = \begin{pmatrix} 13 \\ 11 \\ 14 \end{pmatrix} \] 1. Write the augmented matrix: \[ \begin{pmatrix} 2 & 1 & 3 & | & 13 \\ 4 & 1 & -1 & | & 11 \\ 2 & 2 & 3 & | & 14 \end{pmatrix} \] 2. Perform row operations to reduce this matrix to row echelon form. - Replace \( R_2 \) with \( R_2 - 2R_1 \): \[ R_2 = (0, -1, -7 | -15) \] - Replace \( R_3 \) with \( R_3 - R_1 \): \[ R_3 = (0, 1, 0 | 1) \] The matrix becomes: \[ \begin{pmatrix} 2 & 1 & 3 & | & 13 \\ 0 & -1 & -7 & | & -15 \\ 0 & 1 & 0 & | & 1 \end{pmatrix} \] 3. Now, simplify \( R_2 \) and \( R_3 \): - Multiply \( R_2 \) by -1: \[ R_2 = (0, 1, 7 | 15) \] 4. The final augmented matrix is: \[ \begin{pmatrix} 2 & 1 & 3 & | & 13 \\ 0 & 1 & 7 & | & 15 \\ 0 & 0 & 1 & | & 1 \end{pmatrix} \] 5. Back-substituting to find \( x, y, z \): - From \( z = 1 \) - Substitute \( z \) into \( R_2 \): \[ y + 7(1) = 15 \implies y = 8 \] - Substitute \( y \) and \( z \) into \( R_1 \): \[ 2x + 1(8) + 3(1) = 13 \implies 2x + 8 + 3 = 13 \implies 2x = 2 \implies x = 1 \] Thus, the coordinates of point \( M \) are: \[ M = (1, 8, 1) \] ### Step 3: Find Reflections \( L' \) and \( M' \) The plane equation is \( x + y + z = 9 \). 1. For point \( L \): - Coordinates of \( L \) are \( \left( \frac{13}{7}, -\frac{10}{7}, 5 \right) \). - Substitute into the plane equation: \[ d = \frac{L_x + L_y + L_z - 9}{\sqrt{1^2 + 1^2 + 1^2}} = \frac{\frac{13}{7} - \frac{10}{7} + 5 - 9}{\sqrt{3}} = \frac{\frac{3}{7} - 4}{\sqrt{3}} = \frac{\frac{3 - 28}{7}}{\sqrt{3}} = \frac{-25/7}{\sqrt{3}} = -\frac{25}{7\sqrt{3}} \] - The reflection point \( L' \) is given by: \[ L' = L + 2d \cdot \text{normal vector} \] - Normal vector is \( (1, 1, 1) \), so: \[ L' = \left( \frac{13}{7}, -\frac{10}{7}, 5 \right) + 2 \left(-\frac{25}{7\sqrt{3}}\right)(1, 1, 1) \] 2. For point \( M \): - Coordinates of \( M \) are \( (1, 8, 1) \). - Substitute into the plane equation: \[ d = \frac{1 + 8 + 1 - 9}{\sqrt{3}} = \frac{1}{\sqrt{3}} \] - The reflection point \( M' \) is given by: \[ M' = M + 2d \cdot \text{normal vector} \] - So: \[ M' = (1, 8, 1) + 2 \left(\frac{1}{\sqrt{3}}\right)(1, 1, 1) \] ### Final Coordinates Thus, the coordinates of points are: - \( L = \left( \frac{13}{7}, -\frac{10}{7}, 5 \right) \) - \( M = (1, 8, 1) \) - \( L' \) and \( M' \) can be calculated using the reflection formulas as shown.
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|20 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If A = [[l_(1),m_(1),n_(1)],[l_(2),m_(2),n_(2)],[l_(3),m_(3),n_(3)]] then Find A+I

Consider the line L_(1) : (x-1)/(2)=(y)/(-1)=(z+3)/(1), L_(2) : (x-4)/(1)=(y+3)/(1)=(z+3)/(2) find the angle between them.

Lying in the plane x+y+z=6 is a line L passing through (1, 2, 3) and perpendicular to the line of intersection of planes x+y+z=6 and 2x-y+z=4 , then the equation of L is

Consider the lines L_(1): (x-1)/(2)=(y)/(-1)= (z+3)/(1) , L_(2): (x-4)/(1)= (y+3)/(1)= (z+3)/(2) and the planes P_(1)= 7x+y+2z=3, P_(2): 3x+5y-6z=4 . Let ax+by+cz=d be the equation of the plane passing through the point of intersection of lines L_(1) and L_(2) , and perpendicular to planes P_(1) and P_(2) . Match Column I with Column II.

A line L passing through the focus of the parabola y^2=4(x-1) intersects the parabola at two distinct points. If m is the slope of the line L , then -1 1 m in R (d) none of these

If A=(3,1,-2) ; B=(-1,0,1) and l,m are projections of AB on y-axis, zx plane respectively, then 3l^2-m+1= 0 -1 11 27

Consider a plane x+y-z=1 and point A(1, 2, -3) . A line L has the equation x=1 + 3r, y =2 -r and z=3+4r . The equation of the plane containing line L and point A has the equation

VIKAS GUPTA (BLACK BOOK) ENGLISH-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-5 : Subjective Type Problems
  1. Conside the matrices A=[(1,2,3),(4,1,2),(1,-1,1)] B=[(2,1,3),(4,1,-1),...

    Text Solution

    |

  2. A rod AB of length 2L and mass m is lying on a horizontal frictionless...

    Text Solution

    |

  3. If hata, hatb and hatc are non-coplanar unti vectors such that [hata ...

    Text Solution

    |

  4. Let OABC be a tetrahedron whose edges are of unit length. If vec OA = ...

    Text Solution

    |

  5. If A is the matrix [(1,-3),(-1,1)], then A-(1)/(3)A^(2)+(1)/(9)A^(3)……...

    Text Solution

    |

  6. A sequence of 2xx2 matrices {M(n)} is defined as follows M(n)=[((1)/(...

    Text Solution

    |

  7. Let |veca|=1, |vecb|=1 and |veca+vecb|=sqrt(3). If vec c be a vector ...

    Text Solution

    |

  8. Let vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a), whe...

    Text Solution

    |

  9. The plane denoted by P1 : 4x+7y+4z+81=0 is rotated through a right ang...

    Text Solution

    |

  10. ABCD is a regular tetrahedron, A is the origin and B lies on x-axis. A...

    Text Solution

    |

  11. A, B, C, D are four points in the space and satisfy |vec(AB)|=3, |vec(...

    Text Solution

    |

  12. Let OABC be a regular tetrahedron of edge length unity. Its volume be ...

    Text Solution

    |

  13. If veca and vecb are non zero, non collinear vectors and veca(1)=lamb...

    Text Solution

    |

  14. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  15. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  16. If a, b, c, l, m, n in R-{0} such that al+bm+cn=0, bl+cm+an=0, cl+am+b...

    Text Solution

    |

  17. Let vec ua n d vec v be unit vectors such that vec uxx vec v+ vec u=...

    Text Solution

    |