Home
Class 12
MATHS
Let veca, vecb, vecc be three non-zero n...

Let `veca, vecb, vecc` be three non-zero non coplanar vectors and `vecp, vecq` and `vecr` be three vectors given by `vecp=veca+vecb-2vecc, vecq=3veca-2vecb+vecc` and `vecr=veca-4vcb+2vecc`
If the volume of the parallelopiped determined by `veca, vecb` and `vecc` is `V_(1)` and that of the parallelopiped determined by `veca, vecq` and `vecr` is `V_(2)`, then `V_(2):V_(1)=`

A

10

B

15

C

20

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio \( V_2 : V_1 \) where \( V_1 \) is the volume of the parallelepiped formed by vectors \( \vec{a}, \vec{b}, \vec{c} \) and \( V_2 \) is the volume formed by vectors \( \vec{a}, \vec{q}, \vec{r} \). ### Step 1: Define the volumes The volume \( V_1 \) of the parallelepiped formed by vectors \( \vec{a}, \vec{b}, \vec{c} \) is given by the scalar triple product: \[ V_1 = |\vec{a} \cdot (\vec{b} \times \vec{c})| \] ### Step 2: Express vectors \( \vec{p}, \vec{q}, \vec{r} \) Given: \[ \vec{p} = \vec{a} + \vec{b} - 2\vec{c} \] \[ \vec{q} = 3\vec{a} - 2\vec{b} + \vec{c} \] \[ \vec{r} = \vec{a} - 4\vec{b} + 2\vec{c} \] ### Step 3: Calculate \( V_2 \) The volume \( V_2 \) is given by the scalar triple product: \[ V_2 = |\vec{p} \cdot (\vec{q} \times \vec{r})| \] ### Step 4: Calculate \( \vec{q} \times \vec{r} \) First, we need to compute \( \vec{q} \times \vec{r} \): \[ \vec{q} \times \vec{r} = (3\vec{a} - 2\vec{b} + \vec{c}) \times (\vec{a} - 4\vec{b} + 2\vec{c}) \] Using the distributive property of the cross product: \[ \vec{q} \times \vec{r} = 3\vec{a} \times \vec{a} + 12\vec{a} \times \vec{b} - 6\vec{a} \times \vec{c} - 2\vec{b} \times \vec{a} + 8\vec{b} \times \vec{b} - 2\vec{b} \times \vec{c} + \vec{c} \times \vec{a} - 4\vec{c} \times \vec{b} + 2\vec{c} \times \vec{c} \] Since the cross product of any vector with itself is zero: \[ \vec{q} \times \vec{r} = 12\vec{a} \times \vec{b} - 6\vec{a} \times \vec{c} + 2\vec{b} \times \vec{c} + \vec{c} \times \vec{a} - 4\vec{c} \times \vec{b} \] ### Step 5: Substitute back into \( V_2 \) Now substituting into \( V_2 \): \[ V_2 = |\vec{p} \cdot (\vec{q} \times \vec{r})| = |(\vec{a} + \vec{b} - 2\vec{c}) \cdot (12\vec{a} \times \vec{b} - 6\vec{a} \times \vec{c} + 2\vec{b} \times \vec{c})| \] ### Step 6: Expand the dot product Expanding this dot product: \[ V_2 = |(\vec{a} \cdot (12\vec{a} \times \vec{b})) + (\vec{b} \cdot (12\vec{a} \times \vec{b})) - 2(\vec{c} \cdot (12\vec{a} \times \vec{b})) - (\vec{a} \cdot (6\vec{a} \times \vec{c})) - (\vec{b} \cdot (6\vec{a} \times \vec{c})) + 2(\vec{c} \cdot (6\vec{a} \times \vec{c})) + (\vec{a} \cdot (2\vec{b} \times \vec{c})) + (\vec{b} \cdot (2\vec{b} \times \vec{c})) - 2(\vec{c} \cdot (2\vec{b} \times \vec{c}))| \] Using properties of the scalar triple product, we simplify: \[ V_2 = |12(\vec{a} \cdot (\vec{b} \times \vec{c})) + 6(\vec{a} \cdot (\vec{b} \times \vec{c})) + 2(\vec{a} \cdot (\vec{b} \times \vec{c}))| \] \[ = |20(\vec{a} \cdot (\vec{b} \times \vec{c}))| = 20V_1 \] ### Step 7: Find the ratio \( V_2 : V_1 \) Thus, we find: \[ \frac{V_2}{V_1} = 20 \] ### Final Answer \[ V_2 : V_1 = 20 : 1 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|20 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

Let veca, vecb, vecc be three non-zero non coplanar vectors and vecp, vecq and vecr be three vectors given by vecp=veca+vecb-2vecc, vecq=3veca-2vecb+vecc and vecr=veca-4vecb+2vecc If the volume of the parallelopiped determined by veca, vecb and vecc is V_(1) and that of the parallelopiped determined by vecp, vecq and vecr is V_(2) , then V_(2):V_(1)=

If veca, vecb, vecc , be three on zero non coplanar vectors estabish a linear relation between the vectors: 8vecb+6vecc, veca+vecb+vecc, 2veca-vecb+vecc, veca-vecb-vecc

If veca, vecb, vecc are non coplanar vectors and vecp, vecq, vecr are reciprocal vectors, then (lveca+mvecb+nvecc).(lvecp+mvecq+nvecr) is equal to

veca , vecb and vecc are three non-coplanar vectors and vecr . Is any arbitrary vector. Prove that [vecbvecc vecr]veca+[vecc veca vecr]vecb+[vecavecbvecr]vecc=[veca vecb vecc]vecr .

If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr satisfying vecr.veca=vecr.vecb=vecr.vecc=1 , is

i. If veca, vecb and vecc are non-coplanar vectors, prove that vectors 3veca-7vecb-4vecc, 3veca-2vecb+vecc and veca+vecb+2vecc are coplanar.

If veca,vecb,vecc are non zero and non coplanar vectors show that the following vector are coplanar: 2veca-3vecb+4vecc, -veca+3vecb-5vecc,-veca+2vecb-3vecc

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If vec a , vec ba n d vec c are three non-zero non-coplanar vectors, then the value of (veca.veca)vecb×vecc+(veca.vecb)vecc×veca+(veca.vecc)veca×vecb.

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

VIKAS GUPTA (BLACK BOOK) ENGLISH-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-5 : Subjective Type Problems
  1. Let veca, vecb, vecc be three non-zero non coplanar vectors and vecp, ...

    Text Solution

    |

  2. A rod AB of length 2L and mass m is lying on a horizontal frictionless...

    Text Solution

    |

  3. If hata, hatb and hatc are non-coplanar unti vectors such that [hata ...

    Text Solution

    |

  4. Let OABC be a tetrahedron whose edges are of unit length. If vec OA = ...

    Text Solution

    |

  5. If A is the matrix [(1,-3),(-1,1)], then A-(1)/(3)A^(2)+(1)/(9)A^(3)……...

    Text Solution

    |

  6. A sequence of 2xx2 matrices {M(n)} is defined as follows M(n)=[((1)/(...

    Text Solution

    |

  7. Let |veca|=1, |vecb|=1 and |veca+vecb|=sqrt(3). If vec c be a vector ...

    Text Solution

    |

  8. Let vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a), whe...

    Text Solution

    |

  9. The plane denoted by P1 : 4x+7y+4z+81=0 is rotated through a right ang...

    Text Solution

    |

  10. ABCD is a regular tetrahedron, A is the origin and B lies on x-axis. A...

    Text Solution

    |

  11. A, B, C, D are four points in the space and satisfy |vec(AB)|=3, |vec(...

    Text Solution

    |

  12. Let OABC be a regular tetrahedron of edge length unity. Its volume be ...

    Text Solution

    |

  13. If veca and vecb are non zero, non collinear vectors and veca(1)=lamb...

    Text Solution

    |

  14. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  15. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  16. If a, b, c, l, m, n in R-{0} such that al+bm+cn=0, bl+cm+an=0, cl+am+b...

    Text Solution

    |

  17. Let vec ua n d vec v be unit vectors such that vec uxx vec v+ vec u=...

    Text Solution

    |