Home
Class 12
MATHS
If |veca|=2, |vecb|=5 and veca*vecb=0, ...

If `|veca|=2, |vecb|=5 and veca*vecb=0`, then `veca xx (vecaxx(vecaxx(vecaxx(vecaxx(veca xx vecb)))))` is equal to :

A

`64veca `

B

`64vecb`

C

`-64veca`

D

`-64vecb`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \vec{a} \times (\vec{a} \times (\vec{a} \times (\vec{a} \times (\vec{a} \times \vec{b})))) \) given that \( |\vec{a}| = 2 \), \( |\vec{b}| = 5 \), and \( \vec{a} \cdot \vec{b} = 0 \). ### Step-by-step Solution: 1. **Understanding the Cross Product**: Since \( \vec{a} \cdot \vec{b} = 0 \), it implies that \( \vec{a} \) and \( \vec{b} \) are orthogonal (perpendicular) vectors. 2. **First Cross Product**: Let's denote \( \vec{c} = \vec{a} \times \vec{b} \). The magnitude of \( \vec{c} \) can be calculated using the formula: \[ |\vec{c}| = |\vec{a}| |\vec{b}| \sin(\theta) \] where \( \theta = 90^\circ \) (since they are perpendicular), thus: \[ |\vec{c}| = 2 \cdot 5 \cdot 1 = 10 \] 3. **Second Cross Product**: Now we need to evaluate \( \vec{a} \times \vec{c} \): Using the vector triple product identity: \[ \vec{a} \times \vec{c} = \vec{a} \times (\vec{a} \times \vec{b}) = (\vec{a} \cdot \vec{b}) \vec{a} - (\vec{a} \cdot \vec{a}) \vec{b} \] Since \( \vec{a} \cdot \vec{b} = 0 \), we have: \[ \vec{a} \times \vec{c} = 0 \cdot \vec{a} - (|\vec{a}|^2) \vec{b} = -|\vec{a}|^2 \vec{b} = -4 \vec{b} \] 4. **Third Cross Product**: Now we need to evaluate \( \vec{a} \times (-4 \vec{b}) \): \[ \vec{a} \times (-4 \vec{b}) = -4 (\vec{a} \times \vec{b}) = -4 \vec{c} \] We already found \( |\vec{c}| = 10 \), thus: \[ \vec{a} \times (-4 \vec{b}) = -4 \vec{c} \] 5. **Fourth Cross Product**: Next, we evaluate \( \vec{a} \times (-4 \vec{c}) \): \[ \vec{a} \times (-4 \vec{c}) = -4 (\vec{a} \times \vec{c}) = -4 (-4 \vec{b}) = 16 \vec{b} \] 6. **Fifth Cross Product**: Finally, we evaluate \( \vec{a} \times (16 \vec{b}) \): \[ \vec{a} \times (16 \vec{b}) = 16 (\vec{a} \times \vec{b}) = 16 \vec{c} \] Since \( \vec{c} = \vec{a} \times \vec{b} \) and we already found \( |\vec{c}| = 10 \), we have: \[ \vec{a} \times (16 \vec{b}) = 16 \vec{c} \] 7. **Final Result**: Putting it all together, we find that: \[ \vec{a} \times (\vec{a} \times (\vec{a} \times (\vec{a} \times (\vec{a} \times \vec{b})))) = -64 \vec{b} \] Thus, the final answer is: \[ \boxed{-64 \vec{b}} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|20 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If |veca|=2 and |vecb|=3 and veca.vecb=0, " then " (vecaxx(vecaxx(vecaxx(vecaxxvecb)))) is equal to the given diagonal is vecc = 4 hatk = 8hatk then , the volume of a parallelpiped is

For three non - zero vectors veca, vecb and vecc , if [(veca, vecb and vecc)]=4 , then [vecaxx(vecb+2vecc)vecbxx(vecc-3veca)vecc xx(3veca+vecb)] is equal to

Prove that: vecaxx[vecbxx(veccxxveca)]=(veca.vecb)(vecaxxvecc)

[vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to

If |veca| = 10, |vecb|=2 and veca.vecb=12 , then the value of |veca xx vecb| is:

If the vectors veca and vecb are mutually perpendicular, then veca xx {veca xx {veca xx {veca xx vecb}} is equal to:

If |veca|=|vecb| , then (veca+vecb).(veca-vecb) is equal to

Prove that (veca+3vecb)xx(veca+vecb)+(3veca-5vecb)xx(veca-vecb)=0

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecb xx vecc))/(vecb.(vecc xx veca)) + (vecb.(vecc xx veca))/(vecc.(veca xx vecb)) +(vecc.(vecb xx veca))/(veca. (vecb xx vecc)) is equal to:

VIKAS GUPTA (BLACK BOOK) ENGLISH-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-5 : Subjective Type Problems
  1. If |veca|=2, |vecb|=5 and veca*vecb=0, then veca xx (vecaxx(vecaxx(ve...

    Text Solution

    |

  2. A rod AB of length 2L and mass m is lying on a horizontal frictionless...

    Text Solution

    |

  3. If hata, hatb and hatc are non-coplanar unti vectors such that [hata ...

    Text Solution

    |

  4. Let OABC be a tetrahedron whose edges are of unit length. If vec OA = ...

    Text Solution

    |

  5. If A is the matrix [(1,-3),(-1,1)], then A-(1)/(3)A^(2)+(1)/(9)A^(3)……...

    Text Solution

    |

  6. A sequence of 2xx2 matrices {M(n)} is defined as follows M(n)=[((1)/(...

    Text Solution

    |

  7. Let |veca|=1, |vecb|=1 and |veca+vecb|=sqrt(3). If vec c be a vector ...

    Text Solution

    |

  8. Let vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a), whe...

    Text Solution

    |

  9. The plane denoted by P1 : 4x+7y+4z+81=0 is rotated through a right ang...

    Text Solution

    |

  10. ABCD is a regular tetrahedron, A is the origin and B lies on x-axis. A...

    Text Solution

    |

  11. A, B, C, D are four points in the space and satisfy |vec(AB)|=3, |vec(...

    Text Solution

    |

  12. Let OABC be a regular tetrahedron of edge length unity. Its volume be ...

    Text Solution

    |

  13. If veca and vecb are non zero, non collinear vectors and veca(1)=lamb...

    Text Solution

    |

  14. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  15. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  16. If a, b, c, l, m, n in R-{0} such that al+bm+cn=0, bl+cm+an=0, cl+am+b...

    Text Solution

    |

  17. Let vec ua n d vec v be unit vectors such that vec uxx vec v+ vec u=...

    Text Solution

    |