Home
Class 12
MATHS
Let PQ and QR be diagonals of adjacent ...

Let PQ and QR be diagonals of adjacent faces of a rectangular box, with its centre at O. If `angle QOR, angle ROP and angle POQ` are `theta, phi and Psi` respectively then the value of `'costheta +cos phi+cos Psi' ` is :

A

-2

B

`-sqrt(3)`

C

-1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos \theta + \cos \phi + \cos \psi \) where \( \theta, \phi, \psi \) are the angles between the diagonals of adjacent faces of a rectangular box with center at \( O \). ### Step 1: Define the coordinates of the points Let the rectangular box have dimensions \( a, b, c \). We can define the coordinates of the vertices of the box as follows: - \( P(0, 0, c) \) - \( Q(0, b, 0) \) - \( R(a, b, 0) \) The center \( O \) of the rectangular box is at: \[ O\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right) \] ### Step 2: Define the vectors We can define the vectors from the center \( O \) to the points \( P, Q, R \): - \( \vec{OP} = \left(0 - \frac{a}{2}, 0 - \frac{b}{2}, c - \frac{c}{2}\right) = \left(-\frac{a}{2}, -\frac{b}{2}, \frac{c}{2}\right) \) - \( \vec{OQ} = \left(0 - \frac{a}{2}, b - \frac{b}{2}, 0 - \frac{c}{2}\right) = \left(-\frac{a}{2}, \frac{b}{2}, -\frac{c}{2}\right) \) - \( \vec{OR} = \left(a - \frac{a}{2}, b - \frac{b}{2}, 0 - \frac{c}{2}\right) = \left(\frac{a}{2}, \frac{b}{2}, -\frac{c}{2}\right) \) ### Step 3: Calculate the cosines of the angles To find \( \cos \theta \), \( \cos \phi \), and \( \cos \psi \), we will use the dot product formula: \[ \cos \theta = \frac{\vec{OQ} \cdot \vec{OR}}{|\vec{OQ}| |\vec{OR}|} \] \[ \cos \phi = \frac{\vec{OR} \cdot \vec{OP}}{|\vec{OR}| |\vec{OP}|} \] \[ \cos \psi = \frac{\vec{OP} \cdot \vec{OQ}}{|\vec{OP}| |\vec{OQ}|} \] ### Step 4: Calculate the dot products 1. **For \( \cos \theta \)**: \[ \vec{OQ} \cdot \vec{OR} = \left(-\frac{a}{2}\right)\left(\frac{a}{2}\right) + \left(\frac{b}{2}\right)\left(\frac{b}{2}\right) + \left(-\frac{c}{2}\right)\left(-\frac{c}{2}\right) = -\frac{a^2}{4} + \frac{b^2}{4} + \frac{c^2}{4} \] \[ |\vec{OQ}| = \sqrt{\left(-\frac{a}{2}\right)^2 + \left(\frac{b}{2}\right)^2 + \left(-\frac{c}{2}\right)^2} = \frac{1}{2}\sqrt{a^2 + b^2 + c^2} \] \[ |\vec{OR}| = \sqrt{\left(\frac{a}{2}\right)^2 + \left(\frac{b}{2}\right)^2 + \left(-\frac{c}{2}\right)^2} = \frac{1}{2}\sqrt{a^2 + b^2 + c^2} \] Thus, \[ \cos \theta = \frac{-\frac{a^2}{4} + \frac{b^2}{4} + \frac{c^2}{4}}{\left(\frac{1}{2}\sqrt{a^2 + b^2 + c^2}\right)^2} = \frac{-\frac{a^2}{4} + \frac{b^2}{4} + \frac{c^2}{4}}{\frac{1}{4}(a^2 + b^2 + c^2)} = \frac{-a^2 + b^2 + c^2}{a^2 + b^2 + c^2} \] 2. **For \( \cos \phi \)** and **\( \cos \psi \)**, similar calculations yield: \[ \cos \phi = \frac{-b^2 + a^2 + c^2}{a^2 + b^2 + c^2} \] \[ \cos \psi = \frac{-c^2 + a^2 + b^2}{a^2 + b^2 + c^2} \] ### Step 5: Sum the cosines Now we can sum the cosines: \[ \cos \theta + \cos \phi + \cos \psi = \frac{-a^2 + b^2 + c^2}{a^2 + b^2 + c^2} + \frac{-b^2 + a^2 + c^2}{a^2 + b^2 + c^2} + \frac{-c^2 + a^2 + b^2}{a^2 + b^2 + c^2} \] Combining these, we find: \[ = \frac{-a^2 - b^2 - c^2 + 3(a^2 + b^2 + c^2)}{a^2 + b^2 + c^2} = \frac{2(a^2 + b^2 + c^2)}{a^2 + b^2 + c^2} = 2 \] ### Final Answer Thus, the value of \( \cos \theta + \cos \phi + \cos \psi \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|20 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

In a regular tetrahedron, let theta be angle between any edge and a face not containing the edge. Then the value of cos^(2)theta is

If theta+phi+psi=2pi, prove that cos^2theta+cos^2phi+cos^2psi -2costheta cosphi cospsi=1

If theta is a positive acute angle such that sectheta=cos e c\ 60o , find the value of 2cos^2theta-1 .

In DeltaPQR , right - angled at Q , PR +QR = 25 cm and PQ = 5cm . Determine the values of sin P , cos P and tan P.

At the point of intersection of the rectangular hyperbola xy=c^2 and the parabola y^2=4ax tangents to the rectangular hyperbola and the parabola make angles theta and phi , respectively with x-axis, then

Statement:1 if cos theta=1/7 and cos phi = 13/14 where theta and phi both are acute angles, then the value of theta-phi is pi/3 . Statement:2 cos(pi/3)=1/2

P is a point and P Ma n dP N are the perpendicular form Ptoz-xa n dx-y planes. If O P makes angles theta,alpha,betaa n dgamma with the plane O M N and the x-y ,y-za n dz-x planes, respectively, then prove that cos e c^2theta=cos e c^2alpha+cos e c^2beta+cos e c^2gammadot

The angle of elevation of a cliff from a fixed point is theta . After going up a distance of k meters towards the the top the cliff at an angle of phi , it is found that the angle of elevation is alpha . Show that the height of cliff is k(cos phi - sin phi cot alpha)/(cot theta - cot alpha)

From the top of aspier the angle of depression of the top and bottom of a tower of height h are theta and phi respectively. Then height of the spier and its horizontal distance from the tower are respectively.

Given an isosceles triangle with lateral side of length b, base angle alphalt pi/4, R,r the radii and O, I the centres of the circumcircle and incircle respectively, then prove that: OI= |(bcos, (3alpha)/2)/(2sinalpha cos, alpha/2)|

VIKAS GUPTA (BLACK BOOK) ENGLISH-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-5 : Subjective Type Problems
  1. Let PQ and QR be diagonals of adjacent faces of a rectangular box, wi...

    Text Solution

    |

  2. A rod AB of length 2L and mass m is lying on a horizontal frictionless...

    Text Solution

    |

  3. If hata, hatb and hatc are non-coplanar unti vectors such that [hata ...

    Text Solution

    |

  4. Let OABC be a tetrahedron whose edges are of unit length. If vec OA = ...

    Text Solution

    |

  5. If A is the matrix [(1,-3),(-1,1)], then A-(1)/(3)A^(2)+(1)/(9)A^(3)……...

    Text Solution

    |

  6. A sequence of 2xx2 matrices {M(n)} is defined as follows M(n)=[((1)/(...

    Text Solution

    |

  7. Let |veca|=1, |vecb|=1 and |veca+vecb|=sqrt(3). If vec c be a vector ...

    Text Solution

    |

  8. Let vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a), whe...

    Text Solution

    |

  9. The plane denoted by P1 : 4x+7y+4z+81=0 is rotated through a right ang...

    Text Solution

    |

  10. ABCD is a regular tetrahedron, A is the origin and B lies on x-axis. A...

    Text Solution

    |

  11. A, B, C, D are four points in the space and satisfy |vec(AB)|=3, |vec(...

    Text Solution

    |

  12. Let OABC be a regular tetrahedron of edge length unity. Its volume be ...

    Text Solution

    |

  13. If veca and vecb are non zero, non collinear vectors and veca(1)=lamb...

    Text Solution

    |

  14. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  15. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  16. If a, b, c, l, m, n in R-{0} such that al+bm+cn=0, bl+cm+an=0, cl+am+b...

    Text Solution

    |

  17. Let vec ua n d vec v be unit vectors such that vec uxx vec v+ vec u=...

    Text Solution

    |