Home
Class 12
MATHS
If vecr=a(vecm xx vecn)+b(vecn xx vecI)...

If `vecr=a(vecm xx vecn)+b(vecn xx vecI)+c(vecI xx vecm) and [vecI vecm vecn]=4," find "(a+b+c)/(vecr*(vecI+vecm+vecn))` :

A

`(1)/(4)`

B

`(1)/(2)`

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((a + b + c) / ( \vec{r} \cdot (\vec{I} + \vec{m} + \vec{n}))\) given that \(\vec{r} = a(\vec{m} \times \vec{n}) + b(\vec{n} \times \vec{I}) + c(\vec{I} \times \vec{m})\) and \([\vec{I}, \vec{m}, \vec{n}] = 4\). ### Step-by-step Solution: 1. **Understanding the Given Expression**: We have \(\vec{r} = a(\vec{m} \times \vec{n}) + b(\vec{n} \times \vec{I}) + c(\vec{I} \times \vec{m})\). We need to compute \(\vec{r} \cdot (\vec{I} + \vec{m} + \vec{n})\). 2. **Dot Product with \(\vec{I}\)**: Calculate \(\vec{r} \cdot \vec{I}\): \[ \vec{r} \cdot \vec{I} = a(\vec{m} \times \vec{n}) \cdot \vec{I} + b(\vec{n} \times \vec{I}) \cdot \vec{I} + c(\vec{I} \times \vec{m}) \cdot \vec{I} \] The second and third terms vanish because the dot product of any vector with itself is zero: \[ \vec{r} \cdot \vec{I} = a(\vec{m} \times \vec{n}) \cdot \vec{I} \] 3. **Using the Box Notation**: The term \(a(\vec{m} \times \vec{n}) \cdot \vec{I}\) can be expressed using the box notation: \[ \vec{r} \cdot \vec{I} = a[\vec{I}, \vec{m}, \vec{n}] \] Given \([\vec{I}, \vec{m}, \vec{n}] = 4\): \[ \vec{r} \cdot \vec{I} = 4a \] 4. **Dot Product with \(\vec{m}\)**: Now calculate \(\vec{r} \cdot \vec{m}\): \[ \vec{r} \cdot \vec{m} = a(\vec{m} \times \vec{n}) \cdot \vec{m} + b(\vec{n} \times \vec{I}) \cdot \vec{m} + c(\vec{I} \times \vec{m}) \cdot \vec{m} \] The first and third terms vanish: \[ \vec{r} \cdot \vec{m} = b(\vec{n} \times \vec{I}) \cdot \vec{m} = 4b \] 5. **Dot Product with \(\vec{n}\)**: Now calculate \(\vec{r} \cdot \vec{n}\): \[ \vec{r} \cdot \vec{n} = a(\vec{m} \times \vec{n}) \cdot \vec{n} + b(\vec{n} \times \vec{I}) \cdot \vec{n} + c(\vec{I} \times \vec{m}) \cdot \vec{n} \] The first and second terms vanish: \[ \vec{r} \cdot \vec{n} = c(\vec{I} \times \vec{m}) \cdot \vec{n} = 4c \] 6. **Summing the Dot Products**: Now sum the results: \[ \vec{r} \cdot (\vec{I} + \vec{m} + \vec{n}) = \vec{r} \cdot \vec{I} + \vec{r} \cdot \vec{m} + \vec{r} \cdot \vec{n} = 4a + 4b + 4c = 4(a + b + c) \] 7. **Final Expression**: We need to find: \[ \frac{a + b + c}{\vec{r} \cdot (\vec{I} + \vec{m} + \vec{n})} = \frac{a + b + c}{4(a + b + c)} \] This simplifies to: \[ \frac{1}{4} \] ### Final Answer: \[ \frac{1}{4} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|20 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

Let vecr be a unit vector satisfying vecr xx veca = vecb, " where " |veca|= sqrt3 and |vecb| = sqrt2 , then (a)vecr= 2/3(veca+ veca xx vecb) (b) vecr= 1/3(veca+ veca xx vecb) (c) vecr= 2/3(veca- veca xx vecb) (d) vecr= 1/3(-veca+ veca xx vecb)

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)= (A) [veca vecb vecc] (B) 2[veca vecb vecc]vecr (C) 3[veca vecb vecc]vecr (D) 4[veca vecb vecc]vecr

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)= (A) [veca vecb vecc] (B) 2[veca vecb vecc]vecr (C) 3[veca vecb vecc]vecr (D) 4[veca vecb vecc]vecr

Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecx xx (vecyxxvecz) = veca, vecy xx (veczxxvecx) = vecb and vecx xx vecy = vecc . Find vecx, vecy, vecz in terms of veca, vecb, vecc .

Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecx xx (vecyxxvecz) = veca, vecy xx (veczxxvecx) = vecb and vecx xx vecy = vecc . Find vecx, vecy, vecz in terms of veca, vecb, vecc .

If vecl,vecm,vecn are three non coplanar vectors prove that [vec vecm vecn](vecaxxvecb) =|(vec1.veca, vec1.vecb, vec1),(vecm.veca, vecm.vecb, vecm),(vecn.veca, vecn.vecb, vecn)|

If vecl,vecm,vecn are three non coplanar vectors prove that [vecl vecm vecn](vecaxxvecb) =|(vec1.veca, vec1.vecb, vec1),(vecm.veca, vecm.vecb, vecm),(vecn.veca, vecn.vecb, vecn)|

Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be three given vectors. If vecr is a vector such that vecr xx vecb = vecc xx vecb and vecr.veca =0 then find the value of vecr .vecb .

Let vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a) , where veca, vecb, vec c are non-zero and non-coplanar vectors. If vecr is orthogonal to veca+vecb+vec c , then find the minimum value of (4)/(pi^(2))(x^(2)+y^(2)) .

If vecx xxvecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 and vecy.vecz=1 then find x,y,z in terms of veca,vecb and gamma .

VIKAS GUPTA (BLACK BOOK) ENGLISH-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-5 : Subjective Type Problems
  1. If vecr=a(vecm xx vecn)+b(vecn xx vecI)+c(vecI xx vecm) and [vecI vec...

    Text Solution

    |

  2. A rod AB of length 2L and mass m is lying on a horizontal frictionless...

    Text Solution

    |

  3. If hata, hatb and hatc are non-coplanar unti vectors such that [hata ...

    Text Solution

    |

  4. Let OABC be a tetrahedron whose edges are of unit length. If vec OA = ...

    Text Solution

    |

  5. If A is the matrix [(1,-3),(-1,1)], then A-(1)/(3)A^(2)+(1)/(9)A^(3)……...

    Text Solution

    |

  6. A sequence of 2xx2 matrices {M(n)} is defined as follows M(n)=[((1)/(...

    Text Solution

    |

  7. Let |veca|=1, |vecb|=1 and |veca+vecb|=sqrt(3). If vec c be a vector ...

    Text Solution

    |

  8. Let vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a), whe...

    Text Solution

    |

  9. The plane denoted by P1 : 4x+7y+4z+81=0 is rotated through a right ang...

    Text Solution

    |

  10. ABCD is a regular tetrahedron, A is the origin and B lies on x-axis. A...

    Text Solution

    |

  11. A, B, C, D are four points in the space and satisfy |vec(AB)|=3, |vec(...

    Text Solution

    |

  12. Let OABC be a regular tetrahedron of edge length unity. Its volume be ...

    Text Solution

    |

  13. If veca and vecb are non zero, non collinear vectors and veca(1)=lamb...

    Text Solution

    |

  14. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  15. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  16. If a, b, c, l, m, n in R-{0} such that al+bm+cn=0, bl+cm+an=0, cl+am+b...

    Text Solution

    |

  17. Let vec ua n d vec v be unit vectors such that vec uxx vec v+ vec u=...

    Text Solution

    |