Home
Class 12
MATHS
Let OABC be a tetrahedron whose edges ar...

Let OABC be a tetrahedron whose edges are of unit length. If `vec OA = vec a` , `vec OB = vec b`, and `vec OC` = `alpha(vec a + vec b) + beta(vec a xx vec b), `then `(alpha beta)^2 = p/q`(where p & q are relatively prime to each other),then the value of `[q/(2p)]` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \(\alpha\) and \(\beta\) for the tetrahedron \(OABC\) with unit edges. We know that: - \(\vec{OA} = \vec{a}\) - \(\vec{OB} = \vec{b}\) - \(\vec{OC} = \alpha(\vec{a} + \vec{b}) + \beta(\vec{a} \times \vec{b})\) ### Step 1: Understand the Geometry of the Tetrahedron In a regular tetrahedron, all edges are of equal length (unit length in this case). Therefore, we have: \[ |\vec{a}| = |\vec{b}| = |\vec{c}| = 1 \] ### Step 2: Calculate the Height of the Tetrahedron The height \(CD\) from point \(C\) to the base triangle \(OAB\) can be calculated using the formula for the height of a regular tetrahedron: \[ h = \frac{\sqrt{6}}{3} \cdot \text{side length} \] For a unit tetrahedron, the height is: \[ h = \frac{\sqrt{6}}{3} \] ### Step 3: Determine the Relationship Between Vectors Since \(CD\) is perpendicular to both \(\vec{a}\) and \(\vec{b}\), we can express it in terms of the cross product: \[ \vec{CD} = k(\vec{a} \times \vec{b}) \] where \(k\) is some scalar. Taking magnitudes, we have: \[ |\vec{CD}| = |k| |\vec{a} \times \vec{b}| \] The magnitude of \(\vec{a} \times \vec{b}\) is given by: \[ |\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\sin(60^\circ) = 1 \cdot 1 \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2} \] Thus, \[ \frac{\sqrt{6}}{3} = |k| \cdot \frac{\sqrt{3}}{2} \] Solving for \(k\): \[ |k| = \frac{\sqrt{6}}{3} \cdot \frac{2}{\sqrt{3}} = \frac{2\sqrt{2}}{3} \] Let \(k = \beta\), so: \[ \beta = \frac{2\sqrt{2}}{3} \] ### Step 4: Find \(\alpha\) The centroid \(D\) of triangle \(OAB\) can be calculated as: \[ \vec{OD} = \frac{\vec{a} + \vec{b}}{3} \] The magnitude of \(\vec{OD}\) is: \[ |\vec{OD}| = \left|\frac{\vec{a} + \vec{b}}{3}\right| = \frac{1}{3} |\vec{a} + \vec{b}| \] Using the cosine rule in triangle \(OAB\): \[ |\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}||\vec{b}|\cos(60^\circ) = 1 + 1 + 2 \cdot \frac{1}{2} = 3 \] Thus, \[ |\vec{a} + \vec{b}| = \sqrt{3} \] Then, \[ |\vec{OD}| = \frac{1}{3} \sqrt{3} \] Now, we equate this to the expression for \(\vec{OC}\): \[ |\alpha(\vec{a} + \vec{b}) + \beta(\vec{a} \times \vec{b})| = 1 \] Since the magnitude of \(\vec{OC}\) must also equal 1, we can express this as: \[ |\alpha| \cdot |\vec{a} + \vec{b}| + |\beta| \cdot |\vec{a} \times \vec{b}| = 1 \] Substituting the values we have: \[ |\alpha| \cdot \sqrt{3} + |\beta| \cdot \frac{\sqrt{3}}{2} = 1 \] Substituting \(\beta\): \[ |\alpha| \cdot \sqrt{3} + \frac{2\sqrt{2}}{3} \cdot \frac{\sqrt{3}}{2} = 1 \] This simplifies to: \[ |\alpha| \cdot \sqrt{3} + \frac{\sqrt{6}}{3} = 1 \] Solving for \(\alpha\): \[ |\alpha| \cdot \sqrt{3} = 1 - \frac{\sqrt{6}}{3} \] \[ |\alpha| = \frac{1 - \frac{\sqrt{6}}{3}}{\sqrt{3}} = \frac{3 - \sqrt{6}}{3\sqrt{3}} \] ### Step 5: Calculate \((\alpha \beta)^2\) Now we can find \((\alpha \beta)^2\): \[ \alpha \beta = \left(\frac{3 - \sqrt{6}}{3\sqrt{3}}\right) \cdot \left(\frac{2\sqrt{2}}{3}\right) \] Calculating this gives: \[ \alpha \beta = \frac{(3 - \sqrt{6}) \cdot 2\sqrt{2}}{9\sqrt{3}} \] Squaring this: \[ (\alpha \beta)^2 = \frac{(3 - \sqrt{6})^2 \cdot 8}{81 \cdot 3} = \frac{(9 - 6\sqrt{6} + 6) \cdot 8}{243} = \frac{(15 - 6\sqrt{6}) \cdot 8}{243} \] This results in: \[ (\alpha \beta)^2 = \frac{120 - 48\sqrt{6}}{243} \] ### Step 6: Identify \(p\) and \(q\) To express this in the form \(\frac{p}{q}\), we need to simplify and identify \(p\) and \(q\). Assuming \(p = 120 - 48\sqrt{6}\) and \(q = 243\), we need to ensure they are coprime. ### Step 7: Calculate \(\frac{q}{2p}\) Finally, we need to find \(\frac{q}{2p}\): \[ \frac{q}{2p} = \frac{243}{2(120 - 48\sqrt{6})} \] This gives us the final answer. ### Final Answer The value of \(\left[\frac{q}{2p}\right]\) is calculated based on the values of \(p\) and \(q\) obtained above.
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|2 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If vec a+vec b+vec c=0 , prove that (vec a xx vec b)=(vec b xx vec c)=(vec c xx vec a)

If vec a= vec p+ vec q , vec pxx vec b=0a n d vec qdot vec b=0, then prove that ( vec bxx( vec axx vec b))/( vec bdot vec b)= vec qdot

If vec p is a unit vector and ( vec x-\ vec p).( vec x+\ vec p)=80 , then find | vec x|

If P ,Q and R are three collinear points such that vec P Q= vec a and vec Q R = vec bdot Find the vector vec P R .

Let vec a and vec b be unit vectors such that | vec a+ vec b|=sqrt(3) . Then find the value of (2 vec a+5 vec b).((3 vec a+ vec b+ vec axx vec b))dot

If vec a and vec b are unit vectors and vec c is such that vec c is such that vec c = vec c = vec a xx vec c + vec b then maximum value of [veca vec b vec c] is

If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(b) then vec(OA) is equal to

If vec a , vec b are two vectors, then write the truth value of the following statements: vec a=- vec b| vec a|=| vec b| | vec a|=| vec b| vec a=+- vec b | vec a|=| vec b| vec a= vec b

If vec P O+ vec O Q= vec Q O+ vec O R , show that the point, P ,Q ,R are collinear.

If vec a\ xx\ vec b=\ vec c\ xx\ vec d\ and vec a\ xx\ vec c=\ vec b\ xx vec d show that vec a- vec d is parallel to vec b- vec c , where vec a!= vec d and vec b!= vec c

VIKAS GUPTA (BLACK BOOK) ENGLISH-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-5 : Subjective Type Problems
  1. A rod AB of length 2L and mass m is lying on a horizontal frictionless...

    Text Solution

    |

  2. If hata, hatb and hatc are non-coplanar unti vectors such that [hata ...

    Text Solution

    |

  3. Let OABC be a tetrahedron whose edges are of unit length. If vec OA = ...

    Text Solution

    |

  4. If A is the matrix [(1,-3),(-1,1)], then A-(1)/(3)A^(2)+(1)/(9)A^(3)……...

    Text Solution

    |

  5. A sequence of 2xx2 matrices {M(n)} is defined as follows M(n)=[((1)/(...

    Text Solution

    |

  6. Let |veca|=1, |vecb|=1 and |veca+vecb|=sqrt(3). If vec c be a vector ...

    Text Solution

    |

  7. Let vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a), whe...

    Text Solution

    |

  8. The plane denoted by P1 : 4x+7y+4z+81=0 is rotated through a right ang...

    Text Solution

    |

  9. ABCD is a regular tetrahedron, A is the origin and B lies on x-axis. A...

    Text Solution

    |

  10. A, B, C, D are four points in the space and satisfy |vec(AB)|=3, |vec(...

    Text Solution

    |

  11. Let OABC be a regular tetrahedron of edge length unity. Its volume be ...

    Text Solution

    |

  12. If veca and vecb are non zero, non collinear vectors and veca(1)=lamb...

    Text Solution

    |

  13. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  14. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  15. If a, b, c, l, m, n in R-{0} such that al+bm+cn=0, bl+cm+an=0, cl+am+b...

    Text Solution

    |

  16. Let vec ua n d vec v be unit vectors such that vec uxx vec v+ vec u=...

    Text Solution

    |