Home
Class 12
MATHS
A sequence of 2xx2 matrices {M(n)} is de...

A sequence of `2xx2` matrices `{M_(n)}` is defined as follows `M_(n)=[((1)/((2n+1)!),(1)/((2n+2)!)),(sum_(k=0)^(n)((2n+2)!)/((2k+2)!), sum_(k=0)^(n)((2n+1)!)/((2k+1)!))]` then `lim_(n to oo) "det". (M_(n))=lambda-e^(-1)`. Find `lambda`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given sequence of matrices \( M_n \) and find the limit of their determinant as \( n \) approaches infinity, which is given to be equal to \( \lambda - e^{-1} \). We will derive the value of \( \lambda \) step by step. ### Step 1: Define the Matrix \( M_n \) The matrix \( M_n \) is defined as: \[ M_n = \begin{pmatrix} \frac{1}{(2n+1)!} & \frac{1}{(2n+2)!} \\ \sum_{k=0}^{n} \frac{(2n+2)!}{(2k+2)!} & \sum_{k=0}^{n} \frac{(2n+1)!}{(2k+1)!} \end{pmatrix} \] ### Step 2: Calculate the Determinant of \( M_n \) The determinant of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by \( ad - bc \). For our matrix \( M_n \): - \( a = \frac{1}{(2n+1)!} \) - \( b = \frac{1}{(2n+2)!} \) - \( c = \sum_{k=0}^{n} \frac{(2n+2)!}{(2k+2)!} \) - \( d = \sum_{k=0}^{n} \frac{(2n+1)!}{(2k+1)!} \) Thus, the determinant \( \text{det}(M_n) \) is: \[ \text{det}(M_n) = \left(\frac{1}{(2n+1)!}\right) \left(\sum_{k=0}^{n} \frac{(2n+1)!}{(2k+1)!}\right) - \left(\frac{1}{(2n+2)!}\right) \left(\sum_{k=0}^{n} \frac{(2n+2)!}{(2k+2)!}\right) \] ### Step 3: Simplify the Determinant The terms involving factorials can be simplified: \[ \text{det}(M_n) = \frac{1}{(2n+1)!} \sum_{k=0}^{n} \frac{(2n+1)!}{(2k+1)!} - \frac{1}{(2n+2)!} \sum_{k=0}^{n} \frac{(2n+2)!}{(2k+2)!} \] This simplifies to: \[ \text{det}(M_n) = \sum_{k=0}^{n} \frac{1}{(2k+1)!} - \frac{1}{(2n+2)!} \sum_{k=0}^{n} \frac{(2n+2)!}{(2k+2)!} \] ### Step 4: Analyze the Limit as \( n \to \infty \) As \( n \) approaches infinity, the series \( \sum_{k=0}^{n} \frac{1}{(2k+1)!} \) approaches the Taylor series expansion for \( e^x \) evaluated at \( x = 1 \): \[ \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} = \sinh(1) \] The second term involving \( \frac{1}{(2n+2)!} \) will tend to zero as \( n \) approaches infinity. Thus, we find: \[ \lim_{n \to \infty} \text{det}(M_n) = \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} = \sinh(1) \] ### Step 5: Relate to Given Limit Condition According to the problem, we have: \[ \lim_{n \to \infty} \text{det}(M_n) = \lambda - e^{-1} \] Setting this equal to our earlier result: \[ \sinh(1) = \lambda - e^{-1} \] ### Step 6: Solve for \( \lambda \) Rearranging gives: \[ \lambda = \sinh(1) + e^{-1} \] ### Conclusion Thus, the value of \( \lambda \) is: \[ \lambda = \sinh(1) + e^{-1} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|2 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo) (2n)/(n!)=

sum_(n=1)^(oo)(2 n^2+n+1)/((n!)) =

A sequence of numbers A_n, n=1,2,3 is defined as follows : A_1=1/2 and for each ngeq2, A_n=((2n-3)/(2n))A_(n-1) , then prove that sum_(k=1)^n A_k<1,ngeq1

If a_(K)=(1)/(K(K+1)) for K=1, 2, 3....n , then (sum_(K=1)^(n)a_(K))^(2)=

lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equal to

If sum_(n=0)^oo2cot^(-1) ((n^2+n-4)/2)=kpi then find the value of k

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .

The limit of (1)/(n ^(4)) sum _(k =1) ^(n) k (k +2) (k +4) as n to oo is equal to (1)/(lamda), then lamda =

Find the sum sum_(n=1)^(oo)(6^(n))/((3^(n)-2^(n))(3^(n+1)-2^(n+1)))

Let f(n)= sum_(k=1)^(n) k^2 ^"(n )C_k)^ 2 then the value of f(5) equals

VIKAS GUPTA (BLACK BOOK) ENGLISH-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-5 : Subjective Type Problems
  1. A rod AB of length 2L and mass m is lying on a horizontal frictionless...

    Text Solution

    |

  2. If hata, hatb and hatc are non-coplanar unti vectors such that [hata ...

    Text Solution

    |

  3. Let OABC be a tetrahedron whose edges are of unit length. If vec OA = ...

    Text Solution

    |

  4. If A is the matrix [(1,-3),(-1,1)], then A-(1)/(3)A^(2)+(1)/(9)A^(3)……...

    Text Solution

    |

  5. A sequence of 2xx2 matrices {M(n)} is defined as follows M(n)=[((1)/(...

    Text Solution

    |

  6. Let |veca|=1, |vecb|=1 and |veca+vecb|=sqrt(3). If vec c be a vector ...

    Text Solution

    |

  7. Let vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a), whe...

    Text Solution

    |

  8. The plane denoted by P1 : 4x+7y+4z+81=0 is rotated through a right ang...

    Text Solution

    |

  9. ABCD is a regular tetrahedron, A is the origin and B lies on x-axis. A...

    Text Solution

    |

  10. A, B, C, D are four points in the space and satisfy |vec(AB)|=3, |vec(...

    Text Solution

    |

  11. Let OABC be a regular tetrahedron of edge length unity. Its volume be ...

    Text Solution

    |

  12. If veca and vecb are non zero, non collinear vectors and veca(1)=lamb...

    Text Solution

    |

  13. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  14. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  15. If a, b, c, l, m, n in R-{0} such that al+bm+cn=0, bl+cm+an=0, cl+am+b...

    Text Solution

    |

  16. Let vec ua n d vec v be unit vectors such that vec uxx vec v+ vec u=...

    Text Solution

    |