Home
Class 12
MATHS
Let |veca|=1, |vecb|=1 and |veca+vecb|=s...

Let `|veca|=1, |vecb|=1 and |veca+vecb|=sqrt(3)`. If `vec c` be a vector such that `vec c=veca+2vecb-3(veca xx vecb)` and `p=|(veca xx vecb) xx vec c|`, then find `[p^(2)]`. (where [ ] represents greatest integer function).

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given information and apply vector algebra principles. ### Step 1: Understand the given conditions We are given: - \(|\vec{a}| = 1\) - \(|\vec{b}| = 1\) - \(|\vec{a} + \vec{b}| = \sqrt{3}\) ### Step 2: Use the property of magnitudes From the property of magnitudes, we can square the third condition: \[ |\vec{a} + \vec{b}|^2 = (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = 3 \] Expanding the dot product: \[ |\vec{a}|^2 + |\vec{b}|^2 + 2(\vec{a} \cdot \vec{b}) = 3 \] Substituting the known magnitudes: \[ 1^2 + 1^2 + 2(\vec{a} \cdot \vec{b}) = 3 \] \[ 2 + 2(\vec{a} \cdot \vec{b}) = 3 \] This simplifies to: \[ 2(\vec{a} \cdot \vec{b}) = 1 \implies \vec{a} \cdot \vec{b} = \frac{1}{2} \] **Hint:** Use the property of magnitudes and the dot product to relate the vectors. ### Step 3: Define vector \(\vec{c}\) We are given: \[ \vec{c} = \vec{a} + 2\vec{b} - 3(\vec{a} \times \vec{b}) \] ### Step 4: Calculate \(\vec{a} \times \vec{b}\) The magnitude of \(\vec{a} \times \vec{b}\) can be calculated using: \[ |\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\sin \theta \] Where \(\theta\) is the angle between \(\vec{a}\) and \(\vec{b}\). Since \(\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos \theta\): \[ \frac{1}{2} = 1 \cdot 1 \cdot \cos \theta \implies \cos \theta = \frac{1}{2} \implies \theta = 60^\circ \] Thus: \[ |\vec{a} \times \vec{b}| = 1 \cdot 1 \cdot \sin 60^\circ = \frac{\sqrt{3}}{2} \] ### Step 5: Calculate \(\vec{c}\) Now substituting back into \(\vec{c}\): \[ \vec{c} = \vec{a} + 2\vec{b} - 3\left(\frac{\sqrt{3}}{2}\right) \hat{n} \] Where \(\hat{n}\) is the unit vector in the direction of \(\vec{a} \times \vec{b}\). ### Step 6: Calculate \(p = |(\vec{a} \times \vec{b}) \times \vec{c}|\) Using the vector triple product identity: \[ \vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w})\vec{v} - (\vec{u} \cdot \vec{v})\vec{w} \] Let \(\vec{u} = \vec{a} \times \vec{b}\), \(\vec{v} = \vec{c}\). We need to compute: \[ p = |(\vec{a} \times \vec{b}) \times \vec{c}| \] ### Step 7: Calculate \(p^2\) We will compute: \[ p^2 = |(\vec{a} \times \vec{b})|^2 |\vec{c}|^2 - (\vec{a} \times \vec{b} \cdot \vec{c})^2 \] Substituting known values, we can find \(p^2\). ### Step 8: Final calculation After performing the calculations, we find: \[ p^2 = \frac{21}{4} \] The greatest integer function \([p^2]\) is: \[ \lfloor \frac{21}{4} \rfloor = 5 \] ### Final Answer Thus, the answer is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|2 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

Given |veca|=|vecb|=1 and |veca + vecb|= sqrt3 "if" vecc is a vector such that vecc -veca - 2vecb = 3(veca xx vecb) then find the value of vecc . Vecb .

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

Find |veca-vecb| , if two vectors veca and vecb are such that |veca|=2,|vecb|=3 and veca.vecb=4 .

If veca , vecb are unit vectors such that |vec a+vecb|=-1 " then " |2veca -3vecb| =

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

Let vec a, vec b, vec c are three vectors such that veca .veca=vecb . vecb = vecc . vecc = 3 and |veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2=27, then

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

If veca, vecb are unit vectors such that |veca +vecb|=1 and |veca -vecb|=sqrt3 , then |3 veca+2vecb |=

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

VIKAS GUPTA (BLACK BOOK) ENGLISH-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-5 : Subjective Type Problems
  1. A rod AB of length 2L and mass m is lying on a horizontal frictionless...

    Text Solution

    |

  2. If hata, hatb and hatc are non-coplanar unti vectors such that [hata ...

    Text Solution

    |

  3. Let OABC be a tetrahedron whose edges are of unit length. If vec OA = ...

    Text Solution

    |

  4. If A is the matrix [(1,-3),(-1,1)], then A-(1)/(3)A^(2)+(1)/(9)A^(3)……...

    Text Solution

    |

  5. A sequence of 2xx2 matrices {M(n)} is defined as follows M(n)=[((1)/(...

    Text Solution

    |

  6. Let |veca|=1, |vecb|=1 and |veca+vecb|=sqrt(3). If vec c be a vector ...

    Text Solution

    |

  7. Let vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a), whe...

    Text Solution

    |

  8. The plane denoted by P1 : 4x+7y+4z+81=0 is rotated through a right ang...

    Text Solution

    |

  9. ABCD is a regular tetrahedron, A is the origin and B lies on x-axis. A...

    Text Solution

    |

  10. A, B, C, D are four points in the space and satisfy |vec(AB)|=3, |vec(...

    Text Solution

    |

  11. Let OABC be a regular tetrahedron of edge length unity. Its volume be ...

    Text Solution

    |

  12. If veca and vecb are non zero, non collinear vectors and veca(1)=lamb...

    Text Solution

    |

  13. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  14. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  15. If a, b, c, l, m, n in R-{0} such that al+bm+cn=0, bl+cm+an=0, cl+am+b...

    Text Solution

    |

  16. Let vec ua n d vec v be unit vectors such that vec uxx vec v+ vec u=...

    Text Solution

    |