Home
Class 12
MATHS
Let vecr=(veca xx vecb)sinx+(vecb xx vec...

Let `vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a)`, where `veca, vecb, vec c` are non-zero and non-coplanar vectors. If `vecr` is orthogonal to `veca+vecb+vec c`, then find the minimum value of `(4)/(pi^(2))(x^(2)+y^(2))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given vector expression and the condition of orthogonality. ### Step 1: Write the given vector expression We have: \[ \vec{r} = (\vec{a} \times \vec{b}) \sin x + (\vec{b} \times \vec{c}) \cos y + 2(\vec{c} \times \vec{a}) \] ### Step 2: Use the orthogonality condition Since \(\vec{r}\) is orthogonal to \(\vec{a} + \vec{b} + \vec{c}\), we have: \[ \vec{r} \cdot (\vec{a} + \vec{b} + \vec{c}) = 0 \] This expands to: \[ \vec{r} \cdot \vec{a} + \vec{r} \cdot \vec{b} + \vec{r} \cdot \vec{c} = 0 \] ### Step 3: Calculate \(\vec{r} \cdot \vec{a}\) Using the properties of the dot product and the cross product: \[ \vec{r} \cdot \vec{a} = \left((\vec{a} \times \vec{b}) \sin x\right) \cdot \vec{a} + \left((\vec{b} \times \vec{c}) \cos y\right) \cdot \vec{a} + \left(2(\vec{c} \times \vec{a})\right) \cdot \vec{a} \] The first term is zero because \(\vec{a} \times \vec{b} \cdot \vec{a} = 0\). The third term is also zero because \(\vec{c} \times \vec{a} \cdot \vec{a} = 0\). Thus: \[ \vec{r} \cdot \vec{a} = (\vec{b} \times \vec{c}) \cdot \vec{a} \cos y \] ### Step 4: Calculate \(\vec{r} \cdot \vec{b}\) Similarly, \[ \vec{r} \cdot \vec{b} = \left((\vec{a} \times \vec{b}) \sin x\right) \cdot \vec{b} + \left((\vec{b} \times \vec{c}) \cos y\right) \cdot \vec{b} + \left(2(\vec{c} \times \vec{a})\right) \cdot \vec{b} \] Again, the first and second terms are zero. Thus: \[ \vec{r} \cdot \vec{b} = 2(\vec{c} \times \vec{a}) \cdot \vec{b} \] ### Step 5: Calculate \(\vec{r} \cdot \vec{c}\) Following the same logic: \[ \vec{r} \cdot \vec{c} = \left((\vec{a} \times \vec{b}) \sin x\right) \cdot \vec{c} + \left((\vec{b} \times \vec{c}) \cos y\right) \cdot \vec{c} + \left(2(\vec{c} \times \vec{a})\right) \cdot \vec{c} \] The second and third terms are zero, so: \[ \vec{r} \cdot \vec{c} = (\vec{a} \times \vec{b}) \cdot \vec{c} \sin x \] ### Step 6: Combine the results Now we substitute back into the orthogonality condition: \[ (\vec{b} \times \vec{c}) \cdot \vec{a} \cos y + 2(\vec{c} \times \vec{a}) \cdot \vec{b} + (\vec{a} \times \vec{b}) \cdot \vec{c} \sin x = 0 \] ### Step 7: Factor out the scalar triple product Let \(V = \vec{a} \cdot (\vec{b} \times \vec{c})\) (the scalar triple product): \[ V \cos y + 2V + V \sin x = 0 \] This simplifies to: \[ V(\cos y + 2 + \sin x) = 0 \] ### Step 8: Solve for \(\cos y + \sin x\) Since \(V \neq 0\) (as \(\vec{a}, \vec{b}, \vec{c}\) are non-coplanar), we have: \[ \cos y + \sin x + 2 = 0 \implies \cos y + \sin x = -2 \] This is not possible since both \(\cos y\) and \(\sin x\) are bounded between -1 and 1. ### Step 9: Find minimum value To minimize \( \frac{4}{\pi^2}(x^2 + y^2) \), we note that: \[ \sin x = -1 \quad \text{and} \quad \cos y = -1 \] This gives: \[ x = -\frac{\pi}{2}, \quad y = \pi \] Thus: \[ x^2 + y^2 = \left(-\frac{\pi}{2}\right)^2 + \pi^2 = \frac{\pi^2}{4} + \pi^2 = \frac{5\pi^2}{4} \] ### Step 10: Calculate the final value Now substituting back: \[ \frac{4}{\pi^2} \left(\frac{5\pi^2}{4}\right) = 5 \] ### Final Answer The minimum value of \( \frac{4}{\pi^2}(x^2 + y^2) \) is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|2 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

Let vecr = (veca xx vecb)sinx + (vecb xx vecc)cosy+(vecc xx veca) , where veca,vecb and vecc are non-zero non-coplanar vectors, If vecr is orthogonal to 3veca + 5vecb+2vecc , then the value of sec^(2)y+"cosec"^(2)x+secy" cosec "x is

If vecaxxvecb=vecc,vecb xx vecc=veca, where vecc != vec0, then

If (veca xx vecb) xx (vec c xx vecd)=h veca+k vecb=r vec c+s vecd , where veca, vecb are non-collinear and vec c, vec d are also non-collinear then :

If (veca xx vecb)xx vec c=veca xx (vecb xx vec c) , where veca, vecb and vec c are any three vectors such that veca*vecb ne 0, vecb*vec c ne 0 , then veca and vec c are :

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

Let veca and vecb be two non- zero perpendicular vectors. A vector vecr satisfying the equation vecr xx vecb = veca can be

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

If the points P( veca + 2 vec b + vec c ), Q (2 veca + 3 vecb), R (vecb+ t vec c ) are collinear, where veca , vec b , vec c are non-coplanar vectors, the value of t is

If vec a , vec b , vec c are any three noncoplanar vector, then ( veca + vecb + vecc )[( veca + vecb )×( veca + vecc )] is :

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

VIKAS GUPTA (BLACK BOOK) ENGLISH-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-5 : Subjective Type Problems
  1. A rod AB of length 2L and mass m is lying on a horizontal frictionless...

    Text Solution

    |

  2. If hata, hatb and hatc are non-coplanar unti vectors such that [hata ...

    Text Solution

    |

  3. Let OABC be a tetrahedron whose edges are of unit length. If vec OA = ...

    Text Solution

    |

  4. If A is the matrix [(1,-3),(-1,1)], then A-(1)/(3)A^(2)+(1)/(9)A^(3)……...

    Text Solution

    |

  5. A sequence of 2xx2 matrices {M(n)} is defined as follows M(n)=[((1)/(...

    Text Solution

    |

  6. Let |veca|=1, |vecb|=1 and |veca+vecb|=sqrt(3). If vec c be a vector ...

    Text Solution

    |

  7. Let vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a), whe...

    Text Solution

    |

  8. The plane denoted by P1 : 4x+7y+4z+81=0 is rotated through a right ang...

    Text Solution

    |

  9. ABCD is a regular tetrahedron, A is the origin and B lies on x-axis. A...

    Text Solution

    |

  10. A, B, C, D are four points in the space and satisfy |vec(AB)|=3, |vec(...

    Text Solution

    |

  11. Let OABC be a regular tetrahedron of edge length unity. Its volume be ...

    Text Solution

    |

  12. If veca and vecb are non zero, non collinear vectors and veca(1)=lamb...

    Text Solution

    |

  13. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  14. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  15. If a, b, c, l, m, n in R-{0} such that al+bm+cn=0, bl+cm+an=0, cl+am+b...

    Text Solution

    |

  16. Let vec ua n d vec v be unit vectors such that vec uxx vec v+ vec u=...

    Text Solution

    |