Home
Class 12
MATHS
If veca and vecb are non zero, non colli...

If `veca and vecb` are non zero, non collinear vectors and `veca_(1)=lambda veca+3 vecb, vecb_(1)=2veca+lambda vecb, vec c_(1)=veca+vecb`. Find the sum of all possible real values of `lambda` so that points `A_(1), B_(1), C_(1)` whose position vectors are `veca_(1), vecb_(1), vec c_(1)` respectively are collinear is equal to.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the values of \( \lambda \) such that the points \( A_1, B_1, C_1 \) with position vectors \( \vec{a_1}, \vec{b_1}, \vec{c_1} \) are collinear. The position vectors are given as follows: \[ \vec{a_1} = \lambda \vec{a} + 3 \vec{b} \] \[ \vec{b_1} = 2 \vec{a} + \lambda \vec{b} \] \[ \vec{c_1} = \vec{a} + \vec{b} \] ### Step 1: Find the vectors \( \vec{A_1B_1} \) and \( \vec{A_1C_1} \) The vector \( \vec{A_1B_1} \) can be expressed as: \[ \vec{A_1B_1} = \vec{b_1} - \vec{a_1} = (2 \vec{a} + \lambda \vec{b}) - (\lambda \vec{a} + 3 \vec{b}) \] \[ = (2 - \lambda) \vec{a} + (\lambda - 3) \vec{b} \] The vector \( \vec{A_1C_1} \) can be expressed as: \[ \vec{A_1C_1} = \vec{c_1} - \vec{a_1} = (\vec{a} + \vec{b}) - (\lambda \vec{a} + 3 \vec{b}) \] \[ = (1 - \lambda) \vec{a} + (1 - 3) \vec{b} = (1 - \lambda) \vec{a} - 2 \vec{b} \] ### Step 2: Set up the condition for collinearity The points \( A_1, B_1, C_1 \) are collinear if the vectors \( \vec{A_1B_1} \) and \( \vec{A_1C_1} \) are linearly dependent. This can be expressed using the cross product: \[ \vec{A_1B_1} \times \vec{A_1C_1} = \vec{0} \] Substituting the vectors we found: \[ ((2 - \lambda) \vec{a} + (\lambda - 3) \vec{b}) \times ((1 - \lambda) \vec{a} - 2 \vec{b}) = \vec{0} \] ### Step 3: Calculate the cross product Using the distributive property of the cross product, we have: \[ = (2 - \lambda)(1 - \lambda) (\vec{a} \times \vec{a}) - 2(2 - \lambda)(\vec{a} \times \vec{b}) + (\lambda - 3)(1 - \lambda)(\vec{b} \times \vec{a}) - 2(\lambda - 3)(\vec{b} \times \vec{b}) \] Since \( \vec{a} \times \vec{a} = \vec{0} \) and \( \vec{b} \times \vec{b} = \vec{0} \), we simplify to: \[ -2(2 - \lambda)(\vec{a} \times \vec{b}) + (\lambda - 3)(1 - \lambda)(\vec{b} \times \vec{a}) = \vec{0} \] Using the property \( \vec{b} \times \vec{a} = -(\vec{a} \times \vec{b}) \): \[ -2(2 - \lambda)(\vec{a} \times \vec{b}) - (\lambda - 3)(1 - \lambda)(\vec{a} \times \vec{b}) = \vec{0} \] Factoring out \( \vec{a} \times \vec{b} \): \[ \left[-2(2 - \lambda) - (\lambda - 3)(1 - \lambda)\right] (\vec{a} \times \vec{b}) = \vec{0} \] ### Step 4: Solve the equation Setting the coefficient to zero: \[ -2(2 - \lambda) - (\lambda - 3)(1 - \lambda) = 0 \] Expanding: \[ -4 + 2\lambda - (\lambda - 3)(1 - \lambda) = 0 \] \[ -4 + 2\lambda - (\lambda - 3 + \lambda^2 - 3\lambda) = 0 \] \[ -4 + 2\lambda - \lambda^2 + \lambda + 3 = 0 \] \[ -\lambda^2 + 3\lambda - 1 = 0 \] Multiplying through by -1: \[ \lambda^2 - 3\lambda + 1 = 0 \] ### Step 5: Find the roots Using the quadratic formula: \[ \lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{3 \pm \sqrt{9 - 4}}{2} = \frac{3 \pm \sqrt{5}}{2} \] ### Step 6: Sum of all possible values of \( \lambda \) The sum of the roots \( \lambda_1 + \lambda_2 \) is given by: \[ \lambda_1 + \lambda_2 = 3 \] Thus, the final answer is: \[ \text{Sum of all possible real values of } \lambda = 3 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|2 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are two non collinear vectors and vecu = veca-(veca.vecb).vecb and vecv=veca x vecb then vecv is

If veca vecb are non zero and non collinear vectors, then [(veca, vecb, veci)]hati+[(veca, vecb, vecj)]hatj+[(veca, vecb, veck)]hatk is equal to

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If veca and vecb are non-zero, non parallel vectors, then the value of |veca + vecb+veca xx vecb|^(2) +|veca + vecb-veca xx vecb|^(2) equals

If veca and vecb are two non collinear unit vectors and |veca+vecb|=sqrt(3) then find the value of (veca-vecb).(2veca+vecb)

Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(veca.vecb)vecb and vecv=vecaxxvecb , then |vecv| is

If vec a \ a n d \ vec b are two non-collinear unit vector, and ∣ ​ veca + vecb ∣ ​ = 3 ​ then (2 veca −5 vecb ).(3 veca + vecb ) =

veca and vecc are unit collinear vectors and |vecb|=6 , then vecb-3vecc = lambda veca , if lambda is:

If vec a , vec ba n d vec c are three non coplanar vectors, then ( veca + vecb + vecc )[( veca + vecb )×( veca + vecc )] is :

If vec a , vec b , vec c are any three noncoplanar vector, then ( veca + vecb + vecc )[( veca + vecb )×( veca + vecc )] is :

VIKAS GUPTA (BLACK BOOK) ENGLISH-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-5 : Subjective Type Problems
  1. A rod AB of length 2L and mass m is lying on a horizontal frictionless...

    Text Solution

    |

  2. If hata, hatb and hatc are non-coplanar unti vectors such that [hata ...

    Text Solution

    |

  3. Let OABC be a tetrahedron whose edges are of unit length. If vec OA = ...

    Text Solution

    |

  4. If A is the matrix [(1,-3),(-1,1)], then A-(1)/(3)A^(2)+(1)/(9)A^(3)……...

    Text Solution

    |

  5. A sequence of 2xx2 matrices {M(n)} is defined as follows M(n)=[((1)/(...

    Text Solution

    |

  6. Let |veca|=1, |vecb|=1 and |veca+vecb|=sqrt(3). If vec c be a vector ...

    Text Solution

    |

  7. Let vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a), whe...

    Text Solution

    |

  8. The plane denoted by P1 : 4x+7y+4z+81=0 is rotated through a right ang...

    Text Solution

    |

  9. ABCD is a regular tetrahedron, A is the origin and B lies on x-axis. A...

    Text Solution

    |

  10. A, B, C, D are four points in the space and satisfy |vec(AB)|=3, |vec(...

    Text Solution

    |

  11. Let OABC be a regular tetrahedron of edge length unity. Its volume be ...

    Text Solution

    |

  12. If veca and vecb are non zero, non collinear vectors and veca(1)=lamb...

    Text Solution

    |

  13. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  14. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  15. If a, b, c, l, m, n in R-{0} such that al+bm+cn=0, bl+cm+an=0, cl+am+b...

    Text Solution

    |

  16. Let vec ua n d vec v be unit vectors such that vec uxx vec v+ vec u=...

    Text Solution

    |