Home
Class 12
MATHS
The maximum value of sec^(-1)((7-5(x^(2)...

The maximum value of `sec^(-1)((7-5(x^(2)+3))/(2(x^(2)+2)))` is:

A

`(5pi)/(6)`

B

`(5pi)/(12)`

C

`(7pi)/(12)`

D

`(2pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the function \( y = \sec^{-1}\left(\frac{7 - 5(x^2) + 3}{2(x^2) + 2}\right) \), we will follow these steps: ### Step 1: Simplify the expression inside the secant inverse We start by simplifying the expression: \[ y = \sec^{-1}\left(\frac{(7 + 3) - 5x^2}{2x^2 + 2}\right) = \sec^{-1}\left(\frac{10 - 5x^2}{2x^2 + 2}\right) \] ### Step 2: Rewrite the expression Now, we can factor out constants from the numerator and denominator: \[ y = \sec^{-1}\left(\frac{5(2 - x^2)}{2(x^2 + 1)}\right) \] ### Step 3: Set up the inequality for maximum value To find the maximum value of \( y \), we need to ensure that the argument of the secant inverse function is valid. The secant function is defined for values greater than or equal to 1 or less than or equal to -1. Therefore, we need: \[ \left|\frac{5(2 - x^2)}{2(x^2 + 1)}\right| \geq 1 \] ### Step 4: Solve the inequality This leads us to two cases: 1. \( \frac{5(2 - x^2)}{2(x^2 + 1)} \geq 1 \) 2. \( \frac{5(2 - x^2)}{2(x^2 + 1)} \leq -1 \) #### Case 1: \[ 5(2 - x^2) \geq 2(x^2 + 1) \] Expanding and rearranging gives: \[ 10 - 5x^2 \geq 2x^2 + 2 \implies 10 - 2 \geq 7x^2 \implies 8 \geq 7x^2 \implies x^2 \leq \frac{8}{7} \] #### Case 2: \[ 5(2 - x^2) \leq -2(x^2 + 1) \] Expanding and rearranging gives: \[ 10 - 5x^2 \leq -2x^2 - 2 \implies 10 + 2 \leq 3x^2 \implies 12 \leq 3x^2 \implies x^2 \geq 4 \] ### Step 5: Analyze the results From the two cases, we have: 1. \( x^2 \leq \frac{8}{7} \) 2. \( x^2 \geq 4 \) Since \( x^2 \) cannot satisfy both conditions simultaneously, we focus on the first case for maximum values. ### Step 6: Find the maximum value of \( y \) To find the maximum value of \( y \), we substitute \( x^2 = \frac{8}{7} \) into the expression: \[ y = \sec^{-1}\left(\frac{5(2 - \frac{8}{7})}{2(\frac{8}{7} + 1)}\right) \] Calculating this gives: \[ y = \sec^{-1}\left(\frac{5\left(\frac{14 - 8}{7}\right)}{2\left(\frac{15}{7}\right)}\right) = \sec^{-1}\left(\frac{5\left(\frac{6}{7}\right)}{\frac{30}{7}}\right) = \sec^{-1}\left(\frac{30}{30}\right) = \sec^{-1}(1) \] Thus, the maximum value of \( y \) is: \[ y = 0 \] ### Conclusion The maximum value of \( \sec^{-1}\left(\frac{7 - 5(x^2) + 3}{2(x^2) + 2}\right) \) is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VK JAISWAL ENGLISH|Exercise ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT|23 Videos
  • FUNCTION

    VK JAISWAL ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|15 Videos
  • ELLIPSE

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

The maximum value of ((1)/(x))^(2x^(2)) is

If x is real , then the maximum value of (x^(2)+14x+9)/(x^(2)+2x+3) is

What is the maximum value of f(x)=3-(x-2)^(2) ?

The maximum value of y = sqrt((x-3)^(2)+(x^(2)-2)^(2))-sqrt(x^(2)-(x^(2)-1)^(2)) is

The maximum value of the expression (x^(2)+x+1)/(2x^(2)-x+1) , for x in R , is

If x is real, the maximum value of (3x^(2)+9x+17)/(3x^(2)+9x+7) is (a) (17)/(7) (b) (1)/(4) (c) 41 (d) 1

If the maximum value of (sec^-1 x)^2 + (cosec^-1 x)^2 approaches a, the minimum value of (tan^-1 x)^3 +(cot^-1 x)^3 approaches b then (a+b/pi) is equal to

For all real values of x, the maximum value of the expression 3-5x-2x^(2) is

If real numbers x and y satisfy (x+5)^(2)+(y-12)^(2)=196 , then the maximum value of (x^(2)+y^(2))^((1)/(3)) is

If x is real, the maximum and minimum values of expression (x^(2)+14x+9)/(x^(2)+2x+3) will be

VK JAISWAL ENGLISH-FUNCTION -SUBJECTIVE TYPE PROBLEMS
  1. The maximum value of sec^(-1)((7-5(x^(2)+3))/(2(x^(2)+2))) is:

    Text Solution

    |

  2. Let f(x) be a polynomial of degree 6 with leading coefficient 2009. Su...

    Text Solution

    |

  3. Let f (x) =x ^(3)-3x Find f (f (x))

    Text Solution

    |

  4. If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 and f(0)=1AAx ,y in R ,d e t e ...

    Text Solution

    |

  5. If the domain of f(x) = sqrt (12-3^(x)-3^(3-x))+ sin ^(-1) ((2x)/(3 ...

    Text Solution

    |

  6. The number of elements in the range of functions: y=sin^(-1) [x^(2)+5/...

    Text Solution

    |

  7. The number of integers in the range of function f (x) = [ sin x] + [ s...

    Text Solution

    |

  8. If P (x) is polynomial of degree 4 such than P (-1)=P (1) =5 and P (-2...

    Text Solution

    |

  9. The number of integral vlaue (s) of k for which the curve y = sqrt ( ...

    Text Solution

    |

  10. Let the solution set of the equation : sqrt([x+[(x)/(2)]])+ sqrt((x)...

    Text Solution

    |

  11. For the real number x, let f (x)=(1)/( ""^(2011sqrt(1-x^(2011)))). Fi...

    Text Solution

    |

  12. Find the number of elements contained in the range of the function f (...

    Text Solution

    |

  13. Let f (x,y)= x^(2) - y^(2) and g (x,y) = 2xy. such that (f ( x,y))^(2)...

    Text Solution

    |

  14. Let f (x) = (x+5)/(sqrt(x^(2)) +1) AA x in R, then the smallest integr...

    Text Solution

    |

  15. The number of integral values of a for which f (x) = x^(3) +(a+2) x ^(...

    Text Solution

    |

  16. The number of roots of equation (((x-1)(x-3))/((x-2)(x-4))-e^(x)) (((x...

    Text Solution

    |

  17. The number of solutions of the equation cos ^(-1)((1-x ^(2) -2x)/((x+...

    Text Solution

    |

  18. Let f(x)=x^2-bx+c,b is an odd positive integer. Given that f(x)=0 ha...

    Text Solution

    |

  19. Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x...

    Text Solution

    |

  20. If f (x) = 4x ^(3) -x ^(2) -2x +1 and g (x) = {{:(min {f(t): 0 le t le...

    Text Solution

    |

  21. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |