Home
Class 12
MATHS
The range of f(x)=[1+sinx]+[2+si n x/2]+...

The range of `f(x)=[1+sinx]+[2+si n x/2]+[3+si n x/3]++[n+si n x/n]AAx in [0,pi]` , where [.] denotes the greatest integer function, is, `{(n+n-2^2)/2,(n(n+1))/2}` `{(n(n+1))/2}` `{(n(n+1))/2, (n^2+n+2)/2}` `[(n(n+1))/2,(n^2+n+2)/2]`

A

`{(n ^(2) +n-2)/(2), (n(n+1))/(2)}`

B

`{(n (n+1))/(2)}`

C

`{(n(n +1))/(2), (n ^(2) +n+2)/(2), (n ^(2)+ n+4)/(2)}`

D

`{(n (n+1))/(2), (n ^(2) +n-2)/(2)}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = [1 + \sin x] + [2 + \sin \frac{x}{2}] + [3 + \sin \frac{x}{3}] + \ldots + [n + \sin \frac{x}{n}] \) for \( x \in [0, \pi] \), where \([.]\) denotes the greatest integer function, we can follow these steps: ### Step 1: Understand the Function Components The function consists of a sum of greatest integer functions. Each term in the function can be expressed as: \[ f(x) = [k + \sin \frac{x}{k}] \quad \text{for } k = 1, 2, \ldots, n \] where \( \sin \frac{x}{k} \) varies as \( x \) changes from \( 0 \) to \( \pi \). ### Step 2: Analyze the Range of Each Term The sine function varies between \( 0 \) and \( 1 \) for \( x \in [0, \pi] \). Therefore, each term \( [k + \sin \frac{x}{k}] \) can take on the following values: - When \( \sin \frac{x}{k} = 0 \), \( [k + 0] = k \). - When \( \sin \frac{x}{k} = 1 \), \( [k + 1] = k + 1 \). Thus, each term \( [k + \sin \frac{x}{k}] \) can take on the values \( k \) or \( k + 1 \). ### Step 3: Calculate the Minimum Value of \( f(x) \) The minimum value occurs when all sine terms are zero: \[ f_{\text{min}}(x) = [1 + 0] + [2 + 0] + [3 + 0] + \ldots + [n + 0] = 1 + 2 + 3 + \ldots + n = \frac{n(n + 1)}{2} \] ### Step 4: Calculate the Maximum Value of \( f(x) \) The maximum value occurs when all sine terms are at their maximum: \[ f_{\text{max}}(x) = [1 + 1] + [2 + 1] + [3 + 1] + \ldots + [n + 1] = 2 + 3 + 4 + \ldots + (n + 1) \] This can be expressed as: \[ f_{\text{max}}(x) = \left(1 + 2 + 3 + \ldots + n\right) + n = \frac{n(n + 1)}{2} + n = \frac{n(n + 1) + 2n}{2} = \frac{n^2 + 3n}{2} \] ### Step 5: Determine the Range of \( f(x) \) The possible values of \( f(x) \) therefore range from: \[ \frac{n(n + 1)}{2} \quad \text{to} \quad \frac{n^2 + 3n}{2} \] ### Conclusion The range of \( f(x) \) is: \[ \left[\frac{n(n + 1)}{2}, \frac{n^2 + 3n}{2}\right] \] ### Final Answer The correct option is: \[ \left[\frac{n(n + 1)}{2}, \frac{n^2 + n + 2}{2}\right] \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VK JAISWAL ENGLISH|Exercise ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT|23 Videos
  • FUNCTION

    VK JAISWAL ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|15 Videos
  • ELLIPSE

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

The range of f(x)=[1+sinx]+[2+sin(x/2)]+[3+sin (x/3)]+....+[n+sin (x/n)]AAx in [0,pi] , where [.] denotes the greatest integer function, is,

show that [(sqrt(3) +1)^(2n)] + 1 is divisible by 2^(n+1) AA n in N , where [.] denote the greatest integer function .

The value o lim_(xtooo)(1/(n^(3)))([1^(2)x+1^(2)]+[2^(2)x+2^(2)]+…..+[n^(2)x+n^(2)]) is where [.] denotes the greatest integer function.

The value of lim_(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] denotes the greatest integer function is

int_0^x[sint]dt ,w h e r ex in (2npi,(2n+1)pi),n in N ,a n d[dot] denotes the greatest integer function is equal to -npi (b) -(n+1)pi 2npi (d) -(2n+1)pi

The value of int_0^x[cost]dt ,x in [(4n+1)pi/2,(4n+3)pi/2]a n dn in N , is equal to where [.] represents greatest integer function. pi/2(2n-1)-2x pi/2(2n-1)+x pi/2(2n+1)-x (d) pi/2(2n+1)+x

If a_(1) is the greatest value of f(x) , where f(x) =((1)/(2+[sinx])) (where [.] denotes greatest integer function) and a_(n-1)=((-1)^(n-2))/((n+1))+a_(n) (where n in N), then lim_(nrarroo) (a_(n)) is

Prove that for n=1, 2, 3... [(n+1)/2]+[(n+2)/4]+[(n+4)/8]+[(n+8)/16]+...=n where [x] represents Greatest Integer Function

1+n. (2n)/(1+n)+(n(n+1))/(1.2) ((2n)/(1+n))^2+…..

The period of f(x)=[x]+[2x]+[3x]+[4x]+[n x]-(n(n+1))/2x , where n in N , is (where [dot] represents greatest integer function) then which of the following is correct a. n (b) 1 (c) 1/n (d) none of these

VK JAISWAL ENGLISH-FUNCTION -SUBJECTIVE TYPE PROBLEMS
  1. The range of f(x)=[1+sinx]+[2+si n x/2]+[3+si n x/3]++[n+si n x/n]AAx ...

    Text Solution

    |

  2. Let f(x) be a polynomial of degree 6 with leading coefficient 2009. Su...

    Text Solution

    |

  3. Let f (x) =x ^(3)-3x Find f (f (x))

    Text Solution

    |

  4. If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 and f(0)=1AAx ,y in R ,d e t e ...

    Text Solution

    |

  5. If the domain of f(x) = sqrt (12-3^(x)-3^(3-x))+ sin ^(-1) ((2x)/(3 ...

    Text Solution

    |

  6. The number of elements in the range of functions: y=sin^(-1) [x^(2)+5/...

    Text Solution

    |

  7. The number of integers in the range of function f (x) = [ sin x] + [ s...

    Text Solution

    |

  8. If P (x) is polynomial of degree 4 such than P (-1)=P (1) =5 and P (-2...

    Text Solution

    |

  9. The number of integral vlaue (s) of k for which the curve y = sqrt ( ...

    Text Solution

    |

  10. Let the solution set of the equation : sqrt([x+[(x)/(2)]])+ sqrt((x)...

    Text Solution

    |

  11. For the real number x, let f (x)=(1)/( ""^(2011sqrt(1-x^(2011)))). Fi...

    Text Solution

    |

  12. Find the number of elements contained in the range of the function f (...

    Text Solution

    |

  13. Let f (x,y)= x^(2) - y^(2) and g (x,y) = 2xy. such that (f ( x,y))^(2)...

    Text Solution

    |

  14. Let f (x) = (x+5)/(sqrt(x^(2)) +1) AA x in R, then the smallest integr...

    Text Solution

    |

  15. The number of integral values of a for which f (x) = x^(3) +(a+2) x ^(...

    Text Solution

    |

  16. The number of roots of equation (((x-1)(x-3))/((x-2)(x-4))-e^(x)) (((x...

    Text Solution

    |

  17. The number of solutions of the equation cos ^(-1)((1-x ^(2) -2x)/((x+...

    Text Solution

    |

  18. Let f(x)=x^2-bx+c,b is an odd positive integer. Given that f(x)=0 ha...

    Text Solution

    |

  19. Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x...

    Text Solution

    |

  20. If f (x) = 4x ^(3) -x ^(2) -2x +1 and g (x) = {{:(min {f(t): 0 le t le...

    Text Solution

    |

  21. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |