Home
Class 12
MATHS
Let f (x)= [{:(2x+3,x gt 1),(alpha ^(2) ...

Let `f (x)= [{:(2x+3,x gt 1),(alpha ^(2) x+1,x le1):}` If range of `f (x)=R` (set of real numbers) then number orf integral value(s), which `alpha` any take :

A

2

B

3

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) defined as follows: \[ f(x) = \begin{cases} 2x + 3 & \text{if } x > 1 \\ \alpha^2 x + 1 & \text{if } x \leq 1 \end{cases} \] We are tasked with finding the integral values of \( \alpha \) such that the range of \( f(x) \) covers all real numbers \( \mathbb{R} \). ### Step 1: Analyze the function for \( x > 1 \) For \( x > 1 \), the function is given by: \[ f(x) = 2x + 3 \] As \( x \) approaches infinity, \( f(x) \) also approaches infinity. At \( x = 1 \): \[ f(1) = 2(1) + 3 = 5 \] Thus, for \( x > 1 \), the function \( f(x) \) will take values from \( 5 \) to \( \infty \). ### Step 2: Analyze the function for \( x \leq 1 \) For \( x \leq 1 \), the function is given by: \[ f(x) = \alpha^2 x + 1 \] At \( x = 1 \): \[ f(1) = \alpha^2(1) + 1 = \alpha^2 + 1 \] ### Step 3: Ensure continuity at \( x = 1 \) For the function to cover all real numbers, the value of \( f(1) \) from both pieces must be consistent. Therefore, we set: \[ \alpha^2 + 1 \geq 5 \] This simplifies to: \[ \alpha^2 \geq 4 \] ### Step 4: Solve the inequality The inequality \( \alpha^2 \geq 4 \) gives us: \[ \alpha \geq 2 \quad \text{or} \quad \alpha \leq -2 \] ### Step 5: Determine integral values of \( \alpha \) The integral values for \( \alpha \) that satisfy \( \alpha \geq 2 \) are: \[ 2, 3, 4, \ldots \quad (\text{and so on, up to } +\infty) \] The integral values for \( \alpha \) that satisfy \( \alpha \leq -2 \) are: \[ -2, -3, -4, \ldots \quad (\text{and so on, down to } -\infty) \] ### Step 6: Count the integral values Since both conditions provide an infinite number of integral values, we conclude that there are infinitely many integral values that \( \alpha \) can take. ### Final Answer The number of integral values that \( \alpha \) can take is infinite. ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VK JAISWAL ENGLISH|Exercise ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT|23 Videos
  • FUNCTION

    VK JAISWAL ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|15 Videos
  • ELLIPSE

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(x^(4)-lambdax^(3)-3x^(2)+3lambdax)/(x-lambda). If range of f(x) is the set of entire real numbers, the true set in which lambda lies is

Let f (x)= [{:(x ^(2alpha+1)ln x ,,, x gt0),(0 ,,, x =0):} If f (x) satisfies rolle's theorem in interval [0,1], then alpha can be:

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

Let f(x)={{:(3x^2-2x+10, x lt 1),(-2,x gt 1):} The set of values of b for which f(x) has greatest value at x=1 is

If f(x)={:{(x^2", "x le 1),( x^2-x+1"," x gt1):} then show that f(x) is not differentiable at x=1 .

If f(x)={{:(,|x|, x le1),(,2-x,x gt 1):} , then fof (x) is equal to

f(x){{:(x^(3) - 1"," if x le 1 ),(x^(2) "," if x gt 1 ):}

Let f :R to R is defined by f(x)={{:((x+1)^(3),,x le1),(ln x+(b^(2)-3b+10),, x gt1):} If f (x) is invertible, then the set of all values of 'b' is :

If f : R to R , f (x) =x ^(3) and g: R to R , g (x) = 2x ^(2) +1, and R is the set of real numbers then find fog(x) and gof (x).

Let f (x)=(x+1) (x+2) (x+3)…..(x+100) and g (x) =f (x) f''(x) -f'(x) ^(2). Let n be the numbers of real roots of g(x) =0, then:

VK JAISWAL ENGLISH-FUNCTION -SUBJECTIVE TYPE PROBLEMS
  1. Let f (x)= [{:(2x+3,x gt 1),(alpha ^(2) x+1,x le1):} If range of f (x...

    Text Solution

    |

  2. Let f(x) be a polynomial of degree 6 with leading coefficient 2009. Su...

    Text Solution

    |

  3. Let f (x) =x ^(3)-3x Find f (f (x))

    Text Solution

    |

  4. If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 and f(0)=1AAx ,y in R ,d e t e ...

    Text Solution

    |

  5. If the domain of f(x) = sqrt (12-3^(x)-3^(3-x))+ sin ^(-1) ((2x)/(3 ...

    Text Solution

    |

  6. The number of elements in the range of functions: y=sin^(-1) [x^(2)+5/...

    Text Solution

    |

  7. The number of integers in the range of function f (x) = [ sin x] + [ s...

    Text Solution

    |

  8. If P (x) is polynomial of degree 4 such than P (-1)=P (1) =5 and P (-2...

    Text Solution

    |

  9. The number of integral vlaue (s) of k for which the curve y = sqrt ( ...

    Text Solution

    |

  10. Let the solution set of the equation : sqrt([x+[(x)/(2)]])+ sqrt((x)...

    Text Solution

    |

  11. For the real number x, let f (x)=(1)/( ""^(2011sqrt(1-x^(2011)))). Fi...

    Text Solution

    |

  12. Find the number of elements contained in the range of the function f (...

    Text Solution

    |

  13. Let f (x,y)= x^(2) - y^(2) and g (x,y) = 2xy. such that (f ( x,y))^(2)...

    Text Solution

    |

  14. Let f (x) = (x+5)/(sqrt(x^(2)) +1) AA x in R, then the smallest integr...

    Text Solution

    |

  15. The number of integral values of a for which f (x) = x^(3) +(a+2) x ^(...

    Text Solution

    |

  16. The number of roots of equation (((x-1)(x-3))/((x-2)(x-4))-e^(x)) (((x...

    Text Solution

    |

  17. The number of solutions of the equation cos ^(-1)((1-x ^(2) -2x)/((x+...

    Text Solution

    |

  18. Let f(x)=x^2-bx+c,b is an odd positive integer. Given that f(x)=0 ha...

    Text Solution

    |

  19. Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x...

    Text Solution

    |

  20. If f (x) = 4x ^(3) -x ^(2) -2x +1 and g (x) = {{:(min {f(t): 0 le t le...

    Text Solution

    |

  21. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |