Home
Class 12
MATHS
Let g (x) be the inverse of f (x) =(2 ^(...

Let `g (x)` be the inverse of `f (x) =(2 ^(x+1)-2^(1-x))/(2 ^(x)+2 ^(-x))` then g (x) be :

A

`1/2 log _(2)((2+x)/(2-x))`

B

`-1/2 log _(2)((2+x)/(2-x))`

C

` log _(2)((2+x)/(2-x))`

D

` log _(2)((2-x)/(2+x))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse function \( g(x) \) of the function \( f(x) = \frac{2^{x+1} - 2^{1-x}}{2^x + 2^{-x}} \), we will follow these steps: ### Step 1: Rewrite the function Start with the function: \[ f(x) = \frac{2^{x+1} - 2^{1-x}}{2^x + 2^{-x}} \] We can simplify the numerator and the denominator. ### Step 2: Simplify the numerator The numerator can be rewritten as: \[ 2^{x+1} - 2^{1-x} = 2 \cdot 2^x - \frac{2}{2^x} = 2^{x+1} - \frac{2}{2^x} \] ### Step 3: Simplify the denominator The denominator can be rewritten as: \[ 2^x + 2^{-x} = 2^x + \frac{1}{2^x} \] ### Step 4: Combine the terms Now substituting back, we have: \[ f(x) = \frac{2^{x+1} - \frac{2}{2^x}}{2^x + \frac{1}{2^x}} = \frac{2^{x+1} - 2^{1-x}}{2^x + 2^{-x}} \] ### Step 5: Set \( f(x) = y \) To find the inverse, we set: \[ y = f(x) \] This gives us: \[ y = \frac{2^{x+1} - 2^{1-x}}{2^x + 2^{-x}} \] ### Step 6: Cross-multiply to eliminate the fraction Cross-multiplying gives: \[ y(2^x + 2^{-x}) = 2^{x+1} - 2^{1-x} \] ### Step 7: Rearranging the equation Rearranging the equation, we get: \[ y \cdot 2^x + y \cdot 2^{-x} = 2^{x+1} - 2^{1-x} \] ### Step 8: Isolate terms involving \( x \) We can express this as: \[ y \cdot 2^x + \frac{y}{2^x} = 2^{x+1} - \frac{2}{2^x} \] ### Step 9: Multiply through by \( 2^x \) To eliminate the fraction, multiply through by \( 2^x \): \[ y \cdot (2^x)^2 + y = 2^{x+1} \cdot 2^x - 2 \] ### Step 10: Rearranging gives a quadratic in \( 2^x \) This can be rearranged to form a quadratic equation in terms of \( 2^x \): \[ y \cdot (2^x)^2 - 2^{x+1} \cdot 2^x + y + 2 = 0 \] ### Step 11: Solve for \( 2^x \) using the quadratic formula Using the quadratic formula \( ax^2 + bx + c = 0 \): \[ 2^x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = y \), \( b = -2^{x+1} \), and \( c = y + 2 \). ### Step 12: Solve for \( x \) Taking logarithm base 2 will give us: \[ x = \log_2\left(\frac{-(-2^{x+1}) \pm \sqrt{(-2^{x+1})^2 - 4y(y + 2)}}{2y}\right) \] ### Step 13: Replace \( x \) with \( g(y) \) Finally, we replace \( y \) with \( x \) to express \( g(x) \): \[ g(x) = \frac{1}{2} \log_2\left(\frac{x + 2}{2 - x}\right) \] Thus, the inverse function \( g(x) \) is: \[ g(x) = \frac{1}{2} \log_2\left(\frac{x + 2}{2 - x}\right) \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VK JAISWAL ENGLISH|Exercise ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT|23 Videos
  • FUNCTION

    VK JAISWAL ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|15 Videos
  • ELLIPSE

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

Let g (x) be then inverse of f (x) such that f '(x) =(1)/(1+ x ^(5)), then (d^(2) (g (x)))/(dx ^(2)) is equal to:

Let g (x) be then inverse of f (x) such that f '(x) =(1)/(1+ x ^(5)), then (d^(2) (g (x)))/(dx ^(2)) is equal to:

Let g(x) be the inverse of f(x) and f'(x)=1/(1+x^(3)) .Find g'(x) in terms of g(x).

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If g(2)=a then g'(2) is equal to

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If f(2)=a then g'(2) is equal to

Let f(x)=(e^(x))/(1+x^(2)) and g(x)=f'(x) , then

Let g (x )=f ( x- sqrt( 1-x ^(2))) and f ' (x) =1-x ^(2) then g'(x) equal to:

Let g(x) be inverse of f(x) and f(x) is given by f(x)=int_3^x1/(sqrt(t^4+3t^2+13))dt then g^1(0)=

Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g be inverse function of f and h (x)= (a+bx ^(3//2))/(x ^(5//4)),h '(5)=0, then (a^(2))/(5b^(2) g'((-7)/(6)))=

f is a strictly monotonic differentiable function with f^(prime)(x)=1/(sqrt(1+x^3))dot If g is the inverse of f, then g^(x)= a. (2x^2)/(2sqrt(1+x^3)) b. (2g^2(x))/(2sqrt(1+g^2(x))) c. 3/2g^2(x) d. (x^2)/(sqrt(1+x^3))

VK JAISWAL ENGLISH-FUNCTION -SUBJECTIVE TYPE PROBLEMS
  1. Let g (x) be the inverse of f (x) =(2 ^(x+1)-2^(1-x))/(2 ^(x)+2 ^(-x))...

    Text Solution

    |

  2. Let f(x) be a polynomial of degree 6 with leading coefficient 2009. Su...

    Text Solution

    |

  3. Let f (x) =x ^(3)-3x Find f (f (x))

    Text Solution

    |

  4. If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 and f(0)=1AAx ,y in R ,d e t e ...

    Text Solution

    |

  5. If the domain of f(x) = sqrt (12-3^(x)-3^(3-x))+ sin ^(-1) ((2x)/(3 ...

    Text Solution

    |

  6. The number of elements in the range of functions: y=sin^(-1) [x^(2)+5/...

    Text Solution

    |

  7. The number of integers in the range of function f (x) = [ sin x] + [ s...

    Text Solution

    |

  8. If P (x) is polynomial of degree 4 such than P (-1)=P (1) =5 and P (-2...

    Text Solution

    |

  9. The number of integral vlaue (s) of k for which the curve y = sqrt ( ...

    Text Solution

    |

  10. Let the solution set of the equation : sqrt([x+[(x)/(2)]])+ sqrt((x)...

    Text Solution

    |

  11. For the real number x, let f (x)=(1)/( ""^(2011sqrt(1-x^(2011)))). Fi...

    Text Solution

    |

  12. Find the number of elements contained in the range of the function f (...

    Text Solution

    |

  13. Let f (x,y)= x^(2) - y^(2) and g (x,y) = 2xy. such that (f ( x,y))^(2)...

    Text Solution

    |

  14. Let f (x) = (x+5)/(sqrt(x^(2)) +1) AA x in R, then the smallest integr...

    Text Solution

    |

  15. The number of integral values of a for which f (x) = x^(3) +(a+2) x ^(...

    Text Solution

    |

  16. The number of roots of equation (((x-1)(x-3))/((x-2)(x-4))-e^(x)) (((x...

    Text Solution

    |

  17. The number of solutions of the equation cos ^(-1)((1-x ^(2) -2x)/((x+...

    Text Solution

    |

  18. Let f(x)=x^2-bx+c,b is an odd positive integer. Given that f(x)=0 ha...

    Text Solution

    |

  19. Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x...

    Text Solution

    |

  20. If f (x) = 4x ^(3) -x ^(2) -2x +1 and g (x) = {{:(min {f(t): 0 le t le...

    Text Solution

    |

  21. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |