Home
Class 12
MATHS
The domain of f(x)i s(0,1)dot Then the d...

The domain of `f(x)i s(0,1)dot` Then the domain of `(f(e^x)+f(1n|x|)` is `(a)(-1, e)` (b). `(1, e)` `(c).(-e ,-1)` (d) `(-e ,1)`

A

`((1)/(e), 1)`

B

`(-e, 1)`

C

`(-1,-(1)/(e))`

D

`(-e, -1)uu(1,e)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the domain of the expression \( f(e^x) + f(\ln |x|) \) given that the domain of \( f(x) \) is \( (0, 1) \). ### Step-by-Step Solution: 1. **Identify the Domain of \( f(x) \)**: The function \( f(x) \) is defined for \( x \) in the interval \( (0, 1) \). This means that for \( f(e^x) \) and \( f(\ln |x|) \) to be defined, both \( e^x \) and \( \ln |x| \) must lie within the interval \( (0, 1) \). 2. **Find the Domain for \( f(e^x) \)**: - The expression \( e^x \) is always positive for all real \( x \). - To ensure \( e^x < 1 \), we solve the inequality: \[ e^x < 1 \implies x < 0 \] - Thus, the domain for \( f(e^x) \) is \( (-\infty, 0) \). 3. **Find the Domain for \( f(\ln |x|) \)**: - We need \( \ln |x| \) to be in the interval \( (0, 1) \). - This means: \[ 0 < \ln |x| < 1 \] - Solving \( \ln |x| > 0 \): \[ |x| > 1 \implies x < -1 \text{ or } x > 1 \] - Solving \( \ln |x| < 1 \): \[ |x| < e \implies -e < x < e \] - Combining these two results, we find: - For \( x < -1 \): The valid interval is \( (-e, -1) \). - For \( x > 1 \): The valid interval is \( (1, e) \). 4. **Combine the Domains**: - The domain of \( f(e^x) \) is \( (-\infty, 0) \). - The domain of \( f(\ln |x|) \) is \( (-e, -1) \) and \( (1, e) \). - The overall domain for \( f(e^x) + f(\ln |x|) \) is the union of these intervals: - From \( f(e^x) \): \( (-\infty, 0) \) - From \( f(\ln |x|) \): \( (-e, -1) \) and \( (1, e) \) 5. **Identify the Common Valid Intervals**: - The only overlapping interval that satisfies both conditions is \( (-e, -1) \). - The interval \( (1, e) \) does not overlap with \( (-\infty, 0) \). ### Final Result: Thus, the domain of \( f(e^x) + f(\ln |x|) \) is \( (-e, -1) \). ### Answer: The correct option is (c) \( (-e, -1) \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VK JAISWAL ENGLISH|Exercise ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT|23 Videos
  • FUNCTION

    VK JAISWAL ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|15 Videos
  • ELLIPSE

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

The domain of f(x) is (0,1)dot Then the domain of (f(e^x)+f(1n|x|) is a. (-1, e) (b) (1, e) (c) (-e ,-1) (d) (-e ,1)

The domain of f(x) is (0,1) Then the domain of (f(e^x)+f(1n|x|) is (a) (-1, e) (b) (1, e) (c) (-e ,-1) (d) (-e ,1)

The domain of f(x) is (0,1) .Then the domain of (f(e^x)+f(1n|x|) is (a) (-1, e) (b) (1, e) (c) (-e ,-1) (d) (-e ,1)

The domain of f(x) is, if e^(x)+e^(f(x))=e

If f(x)=e^(1-x) then f(x) is

If e^(x)+e^(f(x))=e , then the domain of the function f is

If e^x+e^(f(x))=e , then the range of f(x) is (-oo,1] (b) (-oo,1) (1, oo) (d) [1,oo)

The domain of the definition of the function f(x)=sqrt(1+log_(e)(1-x)) is

The maximum value of x^(1/x),x >0 is (a) e^(1/e) (b) (1/e)^e (c) 1 (d) none of these

The maximum value of x^(1/x),x >0 is (a) e^(1/e) (b) (1/e)^e (c) 1 (d) none of these

VK JAISWAL ENGLISH-FUNCTION -SUBJECTIVE TYPE PROBLEMS
  1. The domain of f(x)i s(0,1)dot Then the domain of (f(e^x)+f(1n|x|) is (...

    Text Solution

    |

  2. Let f(x) be a polynomial of degree 6 with leading coefficient 2009. Su...

    Text Solution

    |

  3. Let f (x) =x ^(3)-3x Find f (f (x))

    Text Solution

    |

  4. If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 and f(0)=1AAx ,y in R ,d e t e ...

    Text Solution

    |

  5. If the domain of f(x) = sqrt (12-3^(x)-3^(3-x))+ sin ^(-1) ((2x)/(3 ...

    Text Solution

    |

  6. The number of elements in the range of functions: y=sin^(-1) [x^(2)+5/...

    Text Solution

    |

  7. The number of integers in the range of function f (x) = [ sin x] + [ s...

    Text Solution

    |

  8. If P (x) is polynomial of degree 4 such than P (-1)=P (1) =5 and P (-2...

    Text Solution

    |

  9. The number of integral vlaue (s) of k for which the curve y = sqrt ( ...

    Text Solution

    |

  10. Let the solution set of the equation : sqrt([x+[(x)/(2)]])+ sqrt((x)...

    Text Solution

    |

  11. For the real number x, let f (x)=(1)/( ""^(2011sqrt(1-x^(2011)))). Fi...

    Text Solution

    |

  12. Find the number of elements contained in the range of the function f (...

    Text Solution

    |

  13. Let f (x,y)= x^(2) - y^(2) and g (x,y) = 2xy. such that (f ( x,y))^(2)...

    Text Solution

    |

  14. Let f (x) = (x+5)/(sqrt(x^(2)) +1) AA x in R, then the smallest integr...

    Text Solution

    |

  15. The number of integral values of a for which f (x) = x^(3) +(a+2) x ^(...

    Text Solution

    |

  16. The number of roots of equation (((x-1)(x-3))/((x-2)(x-4))-e^(x)) (((x...

    Text Solution

    |

  17. The number of solutions of the equation cos ^(-1)((1-x ^(2) -2x)/((x+...

    Text Solution

    |

  18. Let f(x)=x^2-bx+c,b is an odd positive integer. Given that f(x)=0 ha...

    Text Solution

    |

  19. Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x...

    Text Solution

    |

  20. If f (x) = 4x ^(3) -x ^(2) -2x +1 and g (x) = {{:(min {f(t): 0 le t le...

    Text Solution

    |

  21. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |