Home
Class 12
MATHS
Let f (x)= (x)/(sqrt(1+x^(2))) then ubra...

Let `f (x)= (x)/(sqrt(1+x^(2)))` then ubrace(fo fo fo ......of)(x) ` is :

A

`(x)/(sqrt(1+(sum _(r=1)^(n)r)x ^(2)))`

B

`(x)/(sqrt(1+(sum _(r=1)^(n)1)x ^(2)))`

C

`((x)/(sqrt(1+ x ^(2))))^(n)`

D

`(npi)/(sqrt(1+pi x ^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(x) = \frac{x}{\sqrt{1+x^2}} \) iteratively \( n \) times. Let's denote \( f^{(n)}(x) \) as the function \( f \) applied \( n \) times to \( x \). ### Step-by-Step Solution: 1. **Initial Function**: \[ f(x) = \frac{x}{\sqrt{1+x^2}} \] 2. **First Iteration** \( f^{(1)}(x) \): \[ f^{(1)}(x) = f(x) = \frac{x}{\sqrt{1+x^2}} \] 3. **Second Iteration** \( f^{(2)}(x) = f(f(x)) \): - Substitute \( f(x) \) into itself: \[ f^{(2)}(x) = f\left(\frac{x}{\sqrt{1+x^2}}\right) = \frac{\frac{x}{\sqrt{1+x^2}}}{\sqrt{1+\left(\frac{x}{\sqrt{1+x^2}}\right)^2}} \] - Simplifying the denominator: \[ 1 + \left(\frac{x}{\sqrt{1+x^2}}\right)^2 = 1 + \frac{x^2}{1+x^2} = \frac{1+x^2+x^2}{1+x^2} = \frac{1+2x^2}{1+x^2} \] - Therefore, \[ f^{(2)}(x) = \frac{\frac{x}{\sqrt{1+x^2}}}{\sqrt{\frac{1+2x^2}{1+x^2}}} = \frac{x}{\sqrt{1+x^2}} \cdot \frac{\sqrt{1+x^2}}{\sqrt{1+2x^2}} = \frac{x}{\sqrt{1+2x^2}} \] 4. **Third Iteration** \( f^{(3)}(x) = f(f^{(2)}(x)) \): - Substitute \( f^{(2)}(x) \) into \( f \): \[ f^{(3)}(x) = f\left(\frac{x}{\sqrt{1+2x^2}}\right) = \frac{\frac{x}{\sqrt{1+2x^2}}}{\sqrt{1+\left(\frac{x}{\sqrt{1+2x^2}}\right)^2}} \] - Simplifying the denominator: \[ 1 + \left(\frac{x}{\sqrt{1+2x^2}}\right)^2 = 1 + \frac{x^2}{1+2x^2} = \frac{1+2x^2+x^2}{1+2x^2} = \frac{1+3x^2}{1+2x^2} \] - Therefore, \[ f^{(3)}(x) = \frac{\frac{x}{\sqrt{1+2x^2}}}{\sqrt{\frac{1+3x^2}{1+2x^2}}} = \frac{x}{\sqrt{1+2x^2}} \cdot \frac{\sqrt{1+2x^2}}{\sqrt{1+3x^2}} = \frac{x}{\sqrt{1+3x^2}} \] 5. **General Pattern**: - From the iterations, we can see a pattern forming: \[ f^{(n)}(x) = \frac{x}{\sqrt{1+nx^2}} \] ### Final Result: Thus, the result of applying the function \( f \) \( n \) times is: \[ f^{(n)}(x) = \frac{x}{\sqrt{1+nx^2}} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VK JAISWAL ENGLISH|Exercise ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT|23 Videos
  • FUNCTION

    VK JAISWAL ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|15 Videos
  • ELLIPSE

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

let f(x)=sqrt(1+x^2) then

If f(x)=sqrt(x^(2)-2x+1), then f' (x) ?

Let f(x)=(1)/(x) and g(x)=(1)/(sqrt(x)) . Then,

Let f(x)=(1)/(x) and g(x)=(1)/(sqrt(x)) . Then,

Let f(x)=tan^(-1)((sqrt(1+x^(2))-1)/(x)) then which of the following is correct :

Let f(x)=tan^(-1)((sqrt(1+x^(2))-1)/(x)) then which of the following is correct :

If f:RtoR,f(x)=(sqrt(x^(2)+1)-3x)/(sqrt(x^(2)+1)+x) then find the range of f(x) .

Let f(x)=(sqrt(x-2sqrt(x-1)))/(sqrt(x-1)-1).x then

Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

Let f(x)=2x-tan^-1 x- ln(x+sqrt(1+x^2)); x in R, then

VK JAISWAL ENGLISH-FUNCTION -SUBJECTIVE TYPE PROBLEMS
  1. Let f (x)= (x)/(sqrt(1+x^(2))) then ubrace(fo fo fo ......of)(x) is :

    Text Solution

    |

  2. Let f(x) be a polynomial of degree 6 with leading coefficient 2009. Su...

    Text Solution

    |

  3. Let f (x) =x ^(3)-3x Find f (f (x))

    Text Solution

    |

  4. If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 and f(0)=1AAx ,y in R ,d e t e ...

    Text Solution

    |

  5. If the domain of f(x) = sqrt (12-3^(x)-3^(3-x))+ sin ^(-1) ((2x)/(3 ...

    Text Solution

    |

  6. The number of elements in the range of functions: y=sin^(-1) [x^(2)+5/...

    Text Solution

    |

  7. The number of integers in the range of function f (x) = [ sin x] + [ s...

    Text Solution

    |

  8. If P (x) is polynomial of degree 4 such than P (-1)=P (1) =5 and P (-2...

    Text Solution

    |

  9. The number of integral vlaue (s) of k for which the curve y = sqrt ( ...

    Text Solution

    |

  10. Let the solution set of the equation : sqrt([x+[(x)/(2)]])+ sqrt((x)...

    Text Solution

    |

  11. For the real number x, let f (x)=(1)/( ""^(2011sqrt(1-x^(2011)))). Fi...

    Text Solution

    |

  12. Find the number of elements contained in the range of the function f (...

    Text Solution

    |

  13. Let f (x,y)= x^(2) - y^(2) and g (x,y) = 2xy. such that (f ( x,y))^(2)...

    Text Solution

    |

  14. Let f (x) = (x+5)/(sqrt(x^(2)) +1) AA x in R, then the smallest integr...

    Text Solution

    |

  15. The number of integral values of a for which f (x) = x^(3) +(a+2) x ^(...

    Text Solution

    |

  16. The number of roots of equation (((x-1)(x-3))/((x-2)(x-4))-e^(x)) (((x...

    Text Solution

    |

  17. The number of solutions of the equation cos ^(-1)((1-x ^(2) -2x)/((x+...

    Text Solution

    |

  18. Let f(x)=x^2-bx+c,b is an odd positive integer. Given that f(x)=0 ha...

    Text Solution

    |

  19. Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x...

    Text Solution

    |

  20. If f (x) = 4x ^(3) -x ^(2) -2x +1 and g (x) = {{:(min {f(t): 0 le t le...

    Text Solution

    |

  21. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |