Home
Class 12
MATHS
If |cot x+ cosec x|=|cot x|+ |cosec x|, ...

If `|cot x+ cosec x|=|cot x|+ |cosec x|, x in [0,2pi],` then complete set of values of x is : `(a).[0,pi]` `(b).(0, (pi)/(2)]` `(c).(0,(pi)/(2)]uu[(3pi)/(2), 2pi)` `(d).(pi, (3pi)/(2)]uu[(7pi)/(4), 2pi]`

A

`[0,pi]`

B

`(0, (pi)/(2)]`

C

`(0,(pi)/(2)]uu[(3pi)/(2), 2pi)`

D

`(pi, (3pi)/(2)]uu[(7pi)/(4), 2pi]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( | \cot x + \csc x | = | \cot x | + | \csc x | \) for \( x \) in the interval \([0, 2\pi]\), we will analyze the conditions under which the equality holds true. ### Step 1: Understand the Absolute Value Condition The equation \( |a + b| = |a| + |b| \) holds true if both \( a \) and \( b \) are either both positive or both negative. In our case, \( a = \cot x \) and \( b = \csc x \). ### Step 2: Analyze the Quadrants 1. **First Quadrant**: - In the interval \( (0, \frac{\pi}{2}) \), both \( \cot x \) and \( \csc x \) are positive. - Therefore, \( | \cot x + \csc x | = \cot x + \csc x \) and \( | \cot x | + | \csc x | = \cot x + \csc x \). - The equality holds. 2. **Second Quadrant**: - In the interval \( (\frac{\pi}{2}, \pi) \), \( \cot x \) is negative and \( \csc x \) is positive. - Here, \( | \cot x + \csc x | \neq | \cot x | + | \csc x | \). - The equality does not hold. 3. **Third Quadrant**: - In the interval \( (\pi, \frac{3\pi}{2}) \), both \( \cot x \) and \( \csc x \) are negative. - Therefore, \( | \cot x + \csc x | = -(\cot x + \csc x) \) and \( | \cot x | + | \csc x | = -\cot x - \csc x \). - The equality holds. 4. **Fourth Quadrant**: - In the interval \( (\frac{3\pi}{2}, 2\pi) \), \( \cot x \) is positive and \( \csc x \) is negative. - Here, \( | \cot x + \csc x | \neq | \cot x | + | \csc x | \). - The equality does not hold. ### Step 3: Combine the Intervals From our analysis: - The equality holds in the intervals \( (0, \frac{\pi}{2}) \) and \( (\frac{3\pi}{2}, 2\pi) \). ### Final Answer Thus, the complete set of values of \( x \) that satisfy the given equation is: \[ x \in \left(0, \frac{\pi}{2}\right) \cup \left(\frac{3\pi}{2}, 2\pi\right) \] This corresponds to option **(c)**: \( (0, \frac{\pi}{2}] \cup [\frac{3\pi}{2}, 2\pi) \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VK JAISWAL ENGLISH|Exercise ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT|23 Videos
  • FUNCTION

    VK JAISWAL ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|15 Videos
  • ELLIPSE

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

If x , y in [0,2pi]a n dsinx+siny=2, then the value of x+y is pi (b) pi/2 (c) 3pi (d) none of these

The smallest positive root of the equation tanx-x=0 lies in (0,pi/2) (b) (pi/2,pi) (pi,(3pi)/2) (d) ((3pi)/2,2pi)

If |cosec x|=(5pi)/(4)-|(x)/(2)AA x in(-2pi,2pi) , then the number of solutions are

2sin^(2)""(pi)/(6)+cosec^(2)""(7pi)/(6) cos^(2)""(pi)/(3)=(3)/(2)

One of the root equation cosx-x+1/2=0 lies in the interval (0,pi/2) (b) (-pi/(2,0)) (c) (pi/2,pi) (d) (pi,(3pi)/2)

Range of tan^(-1)((2x)/(1+x^2)) is (a) [-pi/4,pi/4] (b) (-pi/2,pi/2) (c) (-pi/2,pi/4) (d) [pi/4,pi/2]

If cos(sinx)=0, then x lies in (a) (pi/4,pi/2)uu(pi/2,\ pi) (b) (-pi/4,\ 0) (c) (pi,(3pi)/2) (d) null set

If cos^2 2x+2cos^2x=1,\ x in (-pi,pi), then x can take the values : +-pi/2 (b) +-pi/4 +-(3pi)/4 (d) none of these

The expression (tan(x-(pi)/(2)).cos((3pi)/(2)+x)-sin^(3)((7pi)/(2)-x))/(cos(x-(pi)/(2)).tan((3pi)/(2)+x)) simplifies to

Range of function f(x)=cot^(-1)(2x-x^2), is (a) [pi/4,(3pi)/2] (b) [0,pi/4] [0,pi/2] (d) [pi/4,pi]

VK JAISWAL ENGLISH-FUNCTION -SUBJECTIVE TYPE PROBLEMS
  1. If |cot x+ cosec x|=|cot x|+ |cosec x|, x in [0,2pi], then complete se...

    Text Solution

    |

  2. Let f(x) be a polynomial of degree 6 with leading coefficient 2009. Su...

    Text Solution

    |

  3. Let f (x) =x ^(3)-3x Find f (f (x))

    Text Solution

    |

  4. If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 and f(0)=1AAx ,y in R ,d e t e ...

    Text Solution

    |

  5. If the domain of f(x) = sqrt (12-3^(x)-3^(3-x))+ sin ^(-1) ((2x)/(3 ...

    Text Solution

    |

  6. The number of elements in the range of functions: y=sin^(-1) [x^(2)+5/...

    Text Solution

    |

  7. The number of integers in the range of function f (x) = [ sin x] + [ s...

    Text Solution

    |

  8. If P (x) is polynomial of degree 4 such than P (-1)=P (1) =5 and P (-2...

    Text Solution

    |

  9. The number of integral vlaue (s) of k for which the curve y = sqrt ( ...

    Text Solution

    |

  10. Let the solution set of the equation : sqrt([x+[(x)/(2)]])+ sqrt((x)...

    Text Solution

    |

  11. For the real number x, let f (x)=(1)/( ""^(2011sqrt(1-x^(2011)))). Fi...

    Text Solution

    |

  12. Find the number of elements contained in the range of the function f (...

    Text Solution

    |

  13. Let f (x,y)= x^(2) - y^(2) and g (x,y) = 2xy. such that (f ( x,y))^(2)...

    Text Solution

    |

  14. Let f (x) = (x+5)/(sqrt(x^(2)) +1) AA x in R, then the smallest integr...

    Text Solution

    |

  15. The number of integral values of a for which f (x) = x^(3) +(a+2) x ^(...

    Text Solution

    |

  16. The number of roots of equation (((x-1)(x-3))/((x-2)(x-4))-e^(x)) (((x...

    Text Solution

    |

  17. The number of solutions of the equation cos ^(-1)((1-x ^(2) -2x)/((x+...

    Text Solution

    |

  18. Let f(x)=x^2-bx+c,b is an odd positive integer. Given that f(x)=0 ha...

    Text Solution

    |

  19. Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x...

    Text Solution

    |

  20. If f (x) = 4x ^(3) -x ^(2) -2x +1 and g (x) = {{:(min {f(t): 0 le t le...

    Text Solution

    |

  21. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |