Home
Class 12
MATHS
Find the number of positive integral val...

Find the number of positive integral values of x satisfying `[x/9]=[x/11]` is where [.] -=Gl.F) (a). 21 (b). 22 (c). 23 (d). 24

A

21

B

22

C

23

D

24

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the number of positive integral values of \( x \) satisfying the equation \( \left\lfloor \frac{x}{9} \right\rfloor = \left\lfloor \frac{x}{11} \right\rfloor \), we can follow these steps: ### Step 1: Understand the Greatest Integer Function The greatest integer function \( \left\lfloor y \right\rfloor \) gives the largest integer less than or equal to \( y \). Therefore, we need to find intervals where \( \left\lfloor \frac{x}{9} \right\rfloor \) and \( \left\lfloor \frac{x}{11} \right\rfloor \) are equal. ### Step 2: Set Up the Equation Let \( n = \left\lfloor \frac{x}{9} \right\rfloor = \left\lfloor \frac{x}{11} \right\rfloor \). This means: \[ n \leq \frac{x}{9} < n+1 \quad \text{and} \quad n \leq \frac{x}{11} < n+1 \] ### Step 3: Express \( x \) in Terms of \( n \) From the inequalities, we can express \( x \): 1. From \( n \leq \frac{x}{9} < n+1 \): \[ 9n \leq x < 9(n+1) \] 2. From \( n \leq \frac{x}{11} < n+1 \): \[ 11n \leq x < 11(n+1) \] ### Step 4: Find the Intersection of the Intervals We need to find the intersection of the two intervals: \[ [9n, 9(n+1)) \quad \text{and} \quad [11n, 11(n+1)) \] The intersection will give us the values of \( x \) that satisfy both conditions. ### Step 5: Determine the Range of \( x \) The intersection can be expressed as: \[ \max(9n, 11n) \leq x < \min(9(n+1), 11(n+1)) \] This simplifies to: \[ 11n \leq x < 9n + 9 \] Thus, the range of \( x \) is: \[ 11n \leq x < 9n + 9 \] ### Step 6: Calculate the Length of the Interval To find the number of integral values of \( x \) in this interval: \[ \text{Length} = (9n + 9) - 11n = 9 - 2n \] This length must be positive, so: \[ 9 - 2n > 0 \implies n < 4.5 \] Thus, \( n \) can take values \( 0, 1, 2, 3, 4 \). ### Step 7: Count the Values for Each \( n \) 1. For \( n = 0 \): \( 0 \leq x < 9 \) → 9 values (1 to 8) 2. For \( n = 1 \): \( 11 \leq x < 18 \) → 7 values (11 to 17) 3. For \( n = 2 \): \( 22 \leq x < 27 \) → 5 values (22 to 26) 4. For \( n = 3 \): \( 33 \leq x < 36 \) → 3 values (33 to 35) 5. For \( n = 4 \): \( 44 \leq x < 49 \) → 1 value (44) ### Step 8: Total the Values Now, we sum the values: \[ 8 + 7 + 5 + 3 + 1 = 24 \] ### Final Answer Thus, the total number of positive integral values of \( x \) satisfying the equation is \( \boxed{24} \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VK JAISWAL ENGLISH|Exercise ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT|23 Videos
  • FUNCTION

    VK JAISWAL ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|15 Videos
  • ELLIPSE

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

The number of integral values of x satisfying the equation |x-|x-4||=4 is

Number of integral values of 'x' satisfying |x+4|+|x-4|=8 is :-

Find the smallest integral value of x satisfying (x-2)^(x^2-6x+8))>1

Find the smallest integral value of x satisfying (x-2)^(x^(2)-6x+8) gt 1 .

Number of integral values of x satisfying function f(x)=log(x-1)+log(3-x)

Find the number of positive integral value of x satisfying the inequality ((3^(x)-5^(x))(x-2))/((x^(2)+5x+2))ge0

Find the number of positive integral solutions satisfying the equation (x_1+x_2+x_3)(y_1+y_2)=77.

Find the number of positive integral solutions satisfying the equation (x_1+x_2+x_3)(y_1+y_2)=77.

Find the number or real values of x satisfying the equation 9^(2log_(9)x)+4x+3=0 .

The successor of -22 is (a) -23 (b) -21 (c) 23 (d) 21

VK JAISWAL ENGLISH-FUNCTION -SUBJECTIVE TYPE PROBLEMS
  1. Find the number of positive integral values of x satisfying [x/9]=[x/1...

    Text Solution

    |

  2. Let f(x) be a polynomial of degree 6 with leading coefficient 2009. Su...

    Text Solution

    |

  3. Let f (x) =x ^(3)-3x Find f (f (x))

    Text Solution

    |

  4. If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 and f(0)=1AAx ,y in R ,d e t e ...

    Text Solution

    |

  5. If the domain of f(x) = sqrt (12-3^(x)-3^(3-x))+ sin ^(-1) ((2x)/(3 ...

    Text Solution

    |

  6. The number of elements in the range of functions: y=sin^(-1) [x^(2)+5/...

    Text Solution

    |

  7. The number of integers in the range of function f (x) = [ sin x] + [ s...

    Text Solution

    |

  8. If P (x) is polynomial of degree 4 such than P (-1)=P (1) =5 and P (-2...

    Text Solution

    |

  9. The number of integral vlaue (s) of k for which the curve y = sqrt ( ...

    Text Solution

    |

  10. Let the solution set of the equation : sqrt([x+[(x)/(2)]])+ sqrt((x)...

    Text Solution

    |

  11. For the real number x, let f (x)=(1)/( ""^(2011sqrt(1-x^(2011)))). Fi...

    Text Solution

    |

  12. Find the number of elements contained in the range of the function f (...

    Text Solution

    |

  13. Let f (x,y)= x^(2) - y^(2) and g (x,y) = 2xy. such that (f ( x,y))^(2)...

    Text Solution

    |

  14. Let f (x) = (x+5)/(sqrt(x^(2)) +1) AA x in R, then the smallest integr...

    Text Solution

    |

  15. The number of integral values of a for which f (x) = x^(3) +(a+2) x ^(...

    Text Solution

    |

  16. The number of roots of equation (((x-1)(x-3))/((x-2)(x-4))-e^(x)) (((x...

    Text Solution

    |

  17. The number of solutions of the equation cos ^(-1)((1-x ^(2) -2x)/((x+...

    Text Solution

    |

  18. Let f(x)=x^2-bx+c,b is an odd positive integer. Given that f(x)=0 ha...

    Text Solution

    |

  19. Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x...

    Text Solution

    |

  20. If f (x) = 4x ^(3) -x ^(2) -2x +1 and g (x) = {{:(min {f(t): 0 le t le...

    Text Solution

    |

  21. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |