Home
Class 12
MATHS
Let f: [(2pi)/(3), (5pi)/(3)]to[0,4] be ...

Let `f: [(2pi)/(3), (5pi)/(3)]to[0,4]` be a function difined as `f (x) =sqrt3 sin x - cos x +2,` then :

A

`f ^(-1) (1) =(4pi)/(3)`

B

`f ^(-1) (1)=pi`

C

`f ^(-1) (2) =(5pi)/(6)`

D

`f ^(-1) (2) =(7pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the function \( f(x) = \sqrt{3} \sin x - \cos x + 2 \) defined on the interval \( \left[\frac{2\pi}{3}, \frac{5\pi}{3}\right] \) and find its inverse values for specific outputs. ### Step 1: Understanding the Function The function is given as: \[ f(x) = \sqrt{3} \sin x - \cos x + 2 \] We need to find the range of this function over the specified interval. ### Step 2: Finding the Range of \( f(x) \) To find the range, we will analyze the expression \( \sqrt{3} \sin x - \cos x \). 1. **Rewriting the Function**: We can rewrite \( f(x) \) in a more manageable form. Notice that: \[ f(x) = 2 + \sqrt{3} \sin x - \cos x \] We can express \( \sqrt{3} \sin x - \cos x \) as a single sine function using the sine addition formula. 2. **Using the Sine Addition Formula**: We know that: \[ R \sin(x + \phi) = \sqrt{3} \sin x - \cos x \] where \( R = \sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{3 + 1} = 2 \) and \( \phi = \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{6} \). Therefore, we can rewrite: \[ \sqrt{3} \sin x - \cos x = 2 \sin\left(x - \frac{\pi}{6}\right) \] 3. **Finding the Maximum and Minimum Values**: The maximum value of \( \sin \) is 1 and the minimum value is -1. Thus: \[ \text{Max: } 2 \cdot 1 = 2 \quad \text{and} \quad \text{Min: } 2 \cdot (-1) = -2 \] Therefore, \[ f(x) = 2 + 2 \sin\left(x - \frac{\pi}{6}\right) \] will have a range of: \[ [2 - 2, 2 + 2] = [0, 4] \] ### Step 3: Confirming the Range Since the range of \( f(x) \) is \( [0, 4] \), it matches the codomain given in the problem. ### Step 4: Finding Inverse Values Now, we will find specific inverse values: 1. **Finding \( f^{-1}(1) \)**: Set \( f(x) = 1 \): \[ 1 = \sqrt{3} \sin x - \cos x + 2 \] Rearranging gives: \[ \sqrt{3} \sin x - \cos x = -1 \] This can be expressed as: \[ 2 \sin\left(x - \frac{\pi}{6}\right) = -1 \implies \sin\left(x - \frac{\pi}{6}\right) = -\frac{1}{2} \] The solutions in the interval \( \left[\frac{2\pi}{3}, \frac{5\pi}{3}\right] \) are: \[ x - \frac{\pi}{6} = \frac{7\pi}{6} \implies x = \frac{7\pi}{6} + \frac{\pi}{6} = \frac{8\pi}{6} = \frac{4\pi}{3} \] Thus, \( f^{-1}(1) = \frac{4\pi}{3} \). 2. **Finding \( f^{-1}(2) \)**: Set \( f(x) = 2 \): \[ 2 = \sqrt{3} \sin x - \cos x + 2 \implies \sqrt{3} \sin x - \cos x = 0 \] This implies: \[ \tan x = \frac{1}{\sqrt{3}} \implies x = \frac{\pi}{6} + n\pi \] In the interval \( \left[\frac{2\pi}{3}, \frac{5\pi}{3}\right] \), the solution is: \[ x = \frac{7\pi}{6} \] Thus, \( f^{-1}(2) = \frac{7\pi}{6} \). ### Conclusion The inverse values are: - \( f^{-1}(1) = \frac{4\pi}{3} \) - \( f^{-1}(2) = \frac{7\pi}{6} \)
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VK JAISWAL ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|15 Videos
  • FUNCTION

    VK JAISWAL ENGLISH|Exercise MATCHING TYPE PROBLEMS|6 Videos
  • FUNCTION

    VK JAISWAL ENGLISH|Exercise SUBJECTIVE TYPE PROBLEMS|36 Videos
  • ELLIPSE

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

Let f:[-pi/3,(2pi)/3]vec[0,4] be a function defined as f(x)=sqrt(3)sinx-cosx+2. Then f^(-1)(x) is given by sin^(-1)((x-2)/2)-pi/6 sin^(-1)((x-2)/2)+pi/6 (2pi)/3+cos^(-1)((x-2)/2) (d) none of these

Let f:[-pi/3,(2pi)/3] rarr [0,4] be a function defined as f(x)=sqrt(3)sinx-cosx+2. Then f^(-1)(x) is given by (a) sin^(-1)((x-2)/2)-pi/6 (b) sin^(-1)((x-2)/2)+pi/6 (c) (2pi)/3+cos^(-1)((x-2)/2) (d) none of these

Let f:A->B be a function defined by f(x) =sqrt3sin x +cos x+4. If f is invertible, then

Let f : [-(pi)/(2), (pi)/(2)] rarr [3, 11] defined as f(x) = sin^(2)x + 4 sin x + 6 . Show that f is bijective function.

Let f :RrarrR be a function defined by f(x) = x^3 + x^2 + 3x + sin x . Then f is

Let f :RrarrR be a function defined by f(x) = x^3 + x^2 + 3x + sin x . Then f is

On the interval [-(pi)/(4) , (pi)/(4)] , the function f (x) = sqrt(1 + sin^(2) x) has a maximum value of

Let f:[pi,3pi//2] to R be a function given by f(x)=[sinx]+[1+sinx]+[2+ sinx] Then , the range of f(x) is

At x = (5 pi)/( 6) , the function f (x) = 2 sin 3 x + 3 cos 3 x is

Function f : [(pi)/(2), (3pi)/(2)] rarr [-1, 1], f(x) = sin x is

VK JAISWAL ENGLISH-FUNCTION -ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT
  1. |log (e)|x|| =|k -1| -3 has four distict roots then k satisfies : (whe...

    Text Solution

    |

  2. Which of the following funjctions are difined for all x in R ? (Wher...

    Text Solution

    |

  3. Let f (x)= {{:(x ^(2),0lt x lt2),(2x-3, 2 le x lt3),(x+2, x ge3):} the...

    Text Solution

    |

  4. Let f: [(2pi)/(3), (5pi)/(3)]to[0,4] be a function difined as f (x) =s...

    Text Solution

    |

  5. Let f (x) be invertible function and let f ^(-1) (x) be is inverse. Le...

    Text Solution

    |

  6. Find the value of cos^(-1)(x)+cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

    Text Solution

    |

  7. Let f:R rarr R defined by f(x)=cos^(-1)(-{-x}), where {x} denotes fra...

    Text Solution

    |

  8. Which option (s) is/are ture ?

    Text Solution

    |

  9. If f (x) =[ln (x)/(e)] +[ln (e)/(x)], where [.] denotes greatest inter...

    Text Solution

    |

  10. If f (x)= {{:(x ^(3), , x =Q),(-x ^(3),,x ne Q):}, then :

    Text Solution

    |

  11. Let f (x) be a real vaued continuous function such that f (0) =1/2 a...

    Text Solution

    |

  12. f(x) is an even periodic function with period 10. In [0,5] f (x)= {{:(...

    Text Solution

    |

  13. For the equation (e ^(-x))/(1+x)= lamda which of the following stateme...

    Text Solution

    |

  14. For x in R ^(+), if x, [x], {x} are in harmonic progesssion then the v...

    Text Solution

    |

  15. The equation ||x-1|+a | =4,a in R, has :

    Text Solution

    |

  16. The numer of real values of x satisfying the equation , [(2x+1)/(3)]+[...

    Text Solution

    |

  17. Let f (x= sin ^(6) ((x )/(4)) + cos ^(6) ((x)/(4)). If f ^(n) (x) deno...

    Text Solution

    |

  18. Which of the following is (are) incorrect ?

    Text Solution

    |

  19. If [x] denotes the integral part of x for real x, and S= [(1)/(4)]+[...

    Text Solution

    |

  20. Let f(x) = log ({x}) [x] g (x) =log ({x}){x} h (x)= log ({x}) {x}...

    Text Solution

    |