Home
Class 12
MATHS
If f (x) =[ln (x)/(e)] +[ln (e)/(x)], wh...

If `f (x) =[ln (x)/(e)] +[ln (e)/(x)],` where [.] denotes greatest interger function, the which of the following are ture ?

A

range of `f (x) is {-1,0}`

B

If `f(x) =-1,` then x can be rational as well as irrational

C

If `f(x) =-1,` then x can be rational as well as irrational

D

`f (x)` is periodic function

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function given by: \[ f(x) = \left\lfloor \frac{\ln(x)}{e} \right\rfloor + \left\lfloor \frac{\ln(e)}{x} \right\rfloor \] where \(\lfloor . \rfloor\) denotes the greatest integer function. ### Step 1: Simplify the Function We know that \(\ln(e) = 1\). Therefore, we can rewrite the function as: \[ f(x) = \left\lfloor \frac{\ln(x)}{e} \right\rfloor + \left\lfloor \frac{1}{x} \right\rfloor \] ### Step 2: Analyze Each Term 1. **First Term:** \(\left\lfloor \frac{\ln(x)}{e} \right\rfloor\) - This term depends on the value of \(\ln(x)\). As \(x\) increases, \(\ln(x)\) increases, and thus \(\frac{\ln(x)}{e}\) increases. 2. **Second Term:** \(\left\lfloor \frac{1}{x} \right\rfloor\) - This term is equal to 0 for all \(x > 1\) and is 1 for \(x = 1\). For \(0 < x < 1\), this term will be 1. ### Step 3: Determine the Values of \(f(x)\) - For \(x = 1\): \[ f(1) = \left\lfloor \frac{\ln(1)}{e} \right\rfloor + \left\lfloor \frac{1}{1} \right\rfloor = \left\lfloor 0 \right\rfloor + \left\lfloor 1 \right\rfloor = 0 + 1 = 1 \] - For \(x > 1\): \[ f(x) = \left\lfloor \frac{\ln(x)}{e} \right\rfloor + 0 = \left\lfloor \frac{\ln(x)}{e} \right\rfloor \] This can take various integer values depending on \(x\). - For \(0 < x < 1\): \[ f(x) = \left\lfloor \frac{\ln(x)}{e} \right\rfloor + 1 \] Here, \(\ln(x)\) is negative, so \(\frac{\ln(x)}{e}\) is also negative, and thus \(\left\lfloor \frac{\ln(x)}{e} \right\rfloor\) will be a negative integer. ### Step 4: Determine the Range of \(f(x)\) - As \(x\) approaches 1 from the left, \(f(x)\) approaches 0. - As \(x\) approaches 1 from the right, \(f(x)\) can take values starting from 0 and increasing. - Thus, the possible values of \(f(x)\) are: - For \(x = 1\), \(f(1) = 1\). - For \(x > 1\), \(f(x)\) can be any non-negative integer. - For \(0 < x < 1\), \(f(x)\) can take negative integer values. ### Conclusion The range of \(f(x)\) is \([-1, 1)\) for \(0 < x < 1\) and \(f(x) \geq 0\) for \(x \geq 1\). ### Final Answer The true statements regarding the function \(f(x)\) can be summarized as: 1. The range of \(f(x)\) includes negative integers and 0. 2. \(f(x)\) can take the value of -1 for certain values of \(x\). 3. The function is not periodic.
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VK JAISWAL ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|15 Videos
  • FUNCTION

    VK JAISWAL ENGLISH|Exercise MATCHING TYPE PROBLEMS|6 Videos
  • FUNCTION

    VK JAISWAL ENGLISH|Exercise SUBJECTIVE TYPE PROBLEMS|36 Videos
  • ELLIPSE

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

Domain of f(x)=log(x^2+5x+6)/([x]-1) where [.] denotes greatest integer function:

Let f(x)=x/(1+x^2) and g(x)=(e^(-x))/(1+[x]) (where [.] denote greatest integer function), then

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

Range of f(x)=[1/(log(x^(2)+e))]+1/sqrt(1+x^(2)), where [*] denotes greatest integer function, is

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

let A be the greatest value of the function f(x)=log _(x) [x], (where [.] denotes gratest integer function) and B be the least value of the function g (x) = |sin x | +|cos x| , then :

VK JAISWAL ENGLISH-FUNCTION -ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT
  1. |log (e)|x|| =|k -1| -3 has four distict roots then k satisfies : (whe...

    Text Solution

    |

  2. Which of the following funjctions are difined for all x in R ? (Wher...

    Text Solution

    |

  3. Let f (x)= {{:(x ^(2),0lt x lt2),(2x-3, 2 le x lt3),(x+2, x ge3):} the...

    Text Solution

    |

  4. Let f: [(2pi)/(3), (5pi)/(3)]to[0,4] be a function difined as f (x) =s...

    Text Solution

    |

  5. Let f (x) be invertible function and let f ^(-1) (x) be is inverse. Le...

    Text Solution

    |

  6. Find the value of cos^(-1)(x)+cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

    Text Solution

    |

  7. Let f:R rarr R defined by f(x)=cos^(-1)(-{-x}), where {x} denotes fra...

    Text Solution

    |

  8. Which option (s) is/are ture ?

    Text Solution

    |

  9. If f (x) =[ln (x)/(e)] +[ln (e)/(x)], where [.] denotes greatest inter...

    Text Solution

    |

  10. If f (x)= {{:(x ^(3), , x =Q),(-x ^(3),,x ne Q):}, then :

    Text Solution

    |

  11. Let f (x) be a real vaued continuous function such that f (0) =1/2 a...

    Text Solution

    |

  12. f(x) is an even periodic function with period 10. In [0,5] f (x)= {{:(...

    Text Solution

    |

  13. For the equation (e ^(-x))/(1+x)= lamda which of the following stateme...

    Text Solution

    |

  14. For x in R ^(+), if x, [x], {x} are in harmonic progesssion then the v...

    Text Solution

    |

  15. The equation ||x-1|+a | =4,a in R, has :

    Text Solution

    |

  16. The numer of real values of x satisfying the equation , [(2x+1)/(3)]+[...

    Text Solution

    |

  17. Let f (x= sin ^(6) ((x )/(4)) + cos ^(6) ((x)/(4)). If f ^(n) (x) deno...

    Text Solution

    |

  18. Which of the following is (are) incorrect ?

    Text Solution

    |

  19. If [x] denotes the integral part of x for real x, and S= [(1)/(4)]+[...

    Text Solution

    |

  20. Let f(x) = log ({x}) [x] g (x) =log ({x}){x} h (x)= log ({x}) {x}...

    Text Solution

    |