Home
Class 12
MATHS
Let f :[2,oo)to {1,oo) defined by f (x)=...

Let `f :[2,oo)to {1,oo)` defined by `f (x)=2^(x ^(4)-4x ^(2))and g : [(pi)/(2), pi] to A ` defined by `g (x) = (sin x+4)/(sin x-2)` be two invertible functions, then
` f ^(-1) (x)` is equal to

A

`sqrt(2+ sqrt(4-log _(2)x))`

B

`sqrt(2+sqrt(4+ log _(2)x))`

C

`sqrt(4+sqrt(4+log _(2)x))`

D

`sqrt(4- sqrt(2+ log _(2)x))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the function \( f(x) = 2^{x^4 - 4x^2} \), we will follow these steps: ### Step 1: Set up the equation Let \( y = f(x) \). Therefore, we have: \[ y = 2^{x^4 - 4x^2} \] ### Step 2: Take the logarithm To eliminate the exponent, take the logarithm base 2 of both sides: \[ \log_2(y) = x^4 - 4x^2 \] ### Step 3: Rearrange the equation Rearranging gives us: \[ x^4 - 4x^2 - \log_2(y) = 0 \] ### Step 4: Substitute \( z = x^2 \) Let \( z = x^2 \). Then the equation becomes: \[ z^2 - 4z - \log_2(y) = 0 \] ### Step 5: Apply the quadratic formula Using the quadratic formula \( z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): - Here, \( a = 1 \), \( b = -4 \), and \( c = -\log_2(y) \). \[ z = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot (-\log_2(y))}}{2 \cdot 1} \] \[ z = \frac{4 \pm \sqrt{16 + 4\log_2(y)}}{2} \] \[ z = 2 \pm \sqrt{4 + \log_2(y)} \] ### Step 6: Solve for \( x \) Since \( z = x^2 \), we take the positive root (as \( x \) must be non-negative): \[ x^2 = 2 + \sqrt{4 + \log_2(y)} \] \[ x = \sqrt{2 + \sqrt{4 + \log_2(y)}} \] ### Step 7: Substitute back to find \( f^{-1}(x) \) Now, replace \( y \) with \( x \) to express the inverse function: \[ f^{-1}(x) = \sqrt{2 + \sqrt{4 + \log_2(x)}} \] Thus, the final answer is: \[ f^{-1}(x) = \sqrt{2 + \sqrt{4 + \log_2(x)}} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VK JAISWAL ENGLISH|Exercise MATCHING TYPE PROBLEMS|6 Videos
  • FUNCTION

    VK JAISWAL ENGLISH|Exercise SUBJECTIVE TYPE PROBLEMS|36 Videos
  • FUNCTION

    VK JAISWAL ENGLISH|Exercise ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT|23 Videos
  • ELLIPSE

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

Let f :[2,oo)to {1,oo) defined by f (x)=2^(x ^(4)-4x ^(3))and g : [(pi)/(2), pi] to A defined by g (x) = (sin x+4)/(sin x-2) be two invertible functions, then f ^(-1) (x) is equal to

Let f :[2,oo)to {1,oo) defined by f (x)=2^(x ^(4)-4x ^(3))and g : [(pi)/(2), pi] to A defined by g (x) = (sin x+4)/(sin x-2) be two invertible functions, then The set "A" equals to

If f : R rarr R defined by f(x) = (2x-7)/(4) is an invertible function, then f^(-1) =

Let f:[4,oo)to[4,oo) be defined by f(x)=5^(x^((x-4))) .Then f^(-1)(x) is

Let f:(2,oo)to X be defined by f(x)= 4x-x^(2) . Then f is invertible, if X=

If f:[1, oo) rarr [1, oo) is defined as f(x) = 3^(x(x-2)) then f^(-1)(x) is equal to

Let f:A->B be a function defined by f(x) =sqrt3sin x +cos x+4. If f is invertible, then

Let f:(-oo,2] to (-oo,4] be a function defined by f(x)=4x-x^(2) . Then, f^(-1)(x) is

If a function f:[2,oo)toR is defined by f(x)=x^(2)-4x+5 , then the range of f is

Let f : [-(pi)/(2), (pi)/(2)] rarr [3, 11] defined as f(x) = sin^(2)x + 4 sin x + 6 . Show that f is bijective function.