Home
Class 12
MATHS
Let a =lim (xto0) (ln (cos 2x ))/( 3x ^(...

Let `a =lim _(xto0) (ln (cos 2x ))/( 3x ^(2)) , b = lim _(xto0) (sin ^(2) 2x )/(x (1-e ^(x))), c = lim _(x to 1) (sqrtx-x )/( ln x).` Then a,b,c satisfy :

A

`a lt b lt c`

B

`b lt c lt a`

C

`a lt c lt b`

D

`b lt a lt c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given limits step by step, we will evaluate each limit \( a \), \( b \), and \( c \) one by one. ### Step 1: Evaluate \( a = \lim_{x \to 0} \frac{\ln(\cos(2x))}{3x^2} \) 1. **Substituting \( x = 0 \)**: \[ \ln(\cos(0)) = \ln(1) = 0 \quad \text{and} \quad 3(0)^2 = 0 \] This gives us the indeterminate form \( \frac{0}{0} \). 2. **Apply L'Hôpital's Rule**: Differentiate the numerator and denominator: \[ \text{Numerator: } \frac{d}{dx}[\ln(\cos(2x))] = \frac{-\sin(2x) \cdot 2}{\cos(2x)} = -2\tan(2x) \] \[ \text{Denominator: } \frac{d}{dx}[3x^2] = 6x \] Thus, we have: \[ a = \lim_{x \to 0} \frac{-2\tan(2x)}{6x} = \lim_{x \to 0} \frac{-\tan(2x)}{3x} \] 3. **Using the limit \( \lim_{x \to 0} \frac{\tan(kx)}{kx} = 1 \)**: \[ a = \frac{-2}{3} \cdot 1 = -\frac{2}{3} \] ### Step 2: Evaluate \( b = \lim_{x \to 0} \frac{\sin^2(2x)}{x(1 - e^x)} \) 1. **Substituting \( x = 0 \)**: \[ \sin^2(0) = 0 \quad \text{and} \quad 1 - e^0 = 0 \] This gives us the indeterminate form \( \frac{0}{0} \). 2. **Apply L'Hôpital's Rule**: Differentiate the numerator and denominator: \[ \text{Numerator: } \frac{d}{dx}[\sin^2(2x)] = 2\sin(2x)\cdot 2\cos(2x) = 4\sin(2x)\cos(2x) = 2\sin(4x) \] \[ \text{Denominator: } \frac{d}{dx}[x(1 - e^x)] = (1 - e^x) + x(-e^x) = 1 - e^x - xe^x \] Thus, we have: \[ b = \lim_{x \to 0} \frac{2\sin(4x)}{1 - e^x - xe^x} \] 3. **Substituting \( x = 0 \) again**: \[ 1 - e^0 - 0 = 0 \quad \text{(still \( \frac{0}{0} \))} \] 4. **Apply L'Hôpital's Rule again**: Differentiate again: \[ \text{Numerator: } \frac{d}{dx}[2\sin(4x)] = 8\cos(4x) \] \[ \text{Denominator: } \frac{d}{dx}[1 - e^x - xe^x] = -e^x - (e^x + xe^x) = -2e^x - xe^x \] Thus, we have: \[ b = \lim_{x \to 0} \frac{8\cos(4x)}{-2e^x - xe^x} = \frac{8\cdot 1}{-2 - 0} = -4 \] ### Step 3: Evaluate \( c = \lim_{x \to 1} \frac{\sqrt{x} - x}{\ln x} \) 1. **Substituting \( x = 1 \)**: \[ \sqrt{1} - 1 = 0 \quad \text{and} \quad \ln(1) = 0 \] This gives us the indeterminate form \( \frac{0}{0} \). 2. **Apply L'Hôpital's Rule**: Differentiate the numerator and denominator: \[ \text{Numerator: } \frac{d}{dx}[\sqrt{x} - x] = \frac{1}{2\sqrt{x}} - 1 \] \[ \text{Denominator: } \frac{d}{dx}[\ln x] = \frac{1}{x} \] Thus, we have: \[ c = \lim_{x \to 1} \frac{\frac{1}{2\sqrt{x}} - 1}{\frac{1}{x}} = \lim_{x \to 1} \left(\frac{1 - 2\sqrt{x}}{2\sqrt{x}}\cdot x\right) \] 3. **Substituting \( x = 1 \)**: \[ c = \frac{1 - 2}{2} = -\frac{1}{2} \] ### Summary of Results - \( a = -\frac{2}{3} \) - \( b = -4 \) - \( c = -\frac{1}{2} \) ### Final Comparison Now we compare \( a, b, c \): - \( b < a < c \) - Therefore, the order is \( b < a < c \).
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|8 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0) (1- cos 2x)/(x^(2)) = _______

lim _(xto0) ((cos x -secx )/(x ^(2) (x+1)))=

Let a= lim_(x->0)ln(cos2x)/(3x^2), b=lim_(x->0)(sin^(2)2x)/(x(1-e^x)), c=lim_(x->1)(sqrt(x)-x)/lnx

lim_(xto0) (sin(picos^(2)x))/(x^(2)) is equal to

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate lim_(xto0) sin(picos^(2)x)/(x^(2)).

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate lim_(xto0) (e^(x^(2))-cosx)/(x^(2))

Given, lim_(xto0) (sin3x)/(sin7x) .

Evaluate lim_(xto0)(tan2x-sin2x)/(x^(3))