Home
Class 12
MATHS
If f (x) = cot ^(-1)((3x -x ^(3))/( 1- 3...

If `f (x) = cot ^(-1)((3x -x ^(3))/( 1- 3x ^(2)))and g (x) = cos ^(-1) ((1-x ^(2))/(1+x^(2)))` then `lim _(xtoa)(f(x) - f(a))/( g(x) -g (a)), 0 ltalt 1/2` is :

A

1) `(3)/(2 (1+a^(2)))`

B

2) `3/2`

C

3)`(-3)/(2 (1+a^(2)))`

D

4)`-3/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given in the question, we will follow these steps: ### Step 1: Define the functions We have: - \( f(x) = \cot^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right) \) - \( g(x) = \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) \) ### Step 2: Simplify \( f(x) \) Using the identity for the cotangent inverse, we can rewrite \( f(x) \): - Let \( x = \tan(\theta) \), then: \[ f(x) = \cot^{-1}\left(\frac{3\tan(\theta) - \tan^3(\theta)}{1 - 3\tan^2(\theta)}\right) \] This simplifies to: \[ f(x) = \cot^{-1}(\tan(3\theta)) = \frac{\pi}{2} - 3\theta = \frac{\pi}{2} - 3\tan^{-1}(x) \] ### Step 3: Simplify \( g(x) \) Similarly, for \( g(x) \): - Using the identity for cosine inverse: \[ g(x) = \cos^{-1}\left(\frac{1 - \tan^2(\theta)}{1 + \tan^2(\theta)}\right) = \cos^{-1}(\cos(2\theta)) = 2\theta = 2\tan^{-1}(x) \] ### Step 4: Find the derivatives Now we need to find the derivatives \( f'(x) \) and \( g'(x) \): - From \( f(x) = \frac{\pi}{2} - 3\tan^{-1}(x) \): \[ f'(x) = -3 \cdot \frac{1}{1 + x^2} \] - From \( g(x) = 2\tan^{-1}(x) \): \[ g'(x) = 2 \cdot \frac{1}{1 + x^2} \] ### Step 5: Evaluate the limit We need to evaluate: \[ \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(a)}{g'(a)} \] Substituting the derivatives: \[ \frac{f'(a)}{g'(a)} = \frac{-3/(1 + a^2)}{2/(1 + a^2)} = \frac{-3}{2} \] ### Conclusion Thus, the limit is: \[ \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} = -\frac{3}{2} \] ### Final Answer The correct option is: - **Option 4: \(-\frac{3}{2}\)**
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|8 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

If f(x)=cot^(-1) ((3x-x^3)/(1-3x^2)) and g(x)=cos^(-1)((1-x^2)/(1+x^2)) then lim_(x->a) (f(x)-f(a))/(g(x)-g(a))

Let f(x)=sin^(-1)((2x)/(1+x^(2))) and g(x)=cos^(-1)((x^(2)-1)/(x^(2)+1)) . Then tha value of f(10)-g(100) is equal to

f (x) = lim _(x to oo) (x ^(2) + 2 (x+1)^(2n))/((x+1) ^(2n+1) + x^(2) +1),n in N and g (x) =tan ((1)/(2)sin ^(-1)((2f (x))/(1+f ^(2) (x)))), then lim_(x to -3) ((x ^(2) +4x +3))/(sin (x+3) g (x)) is equal to:

If f(a)=2 f'(a)=1 g(a)=-1 g'(a)=2 then lim_(xtoa)(g(x)f(a)-g(a)f(x))/(x-a) is

If f (x) =3x ^(9) -2x ^(4) +2x ^(3)-3x ^(2) +x+ cosx +5 and g (x) =f ^(-1) (x), then the value of g'(6) equals:

If f(1) =g(1)=2 , then lim_(xrarr1) (f(1)g(x)-f(x)g(1)-f(1)+g(1))/(f(x)-g(x)) is equal to

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

If f(x)=2/(x-3),g(x)=(x-3)/(x+4) , and h(x)=-(2(2x+1))/(x^2+x-12) then lim_(x->3)[f(x)+g(x)+h(x)] is (a) -2 (b) -1 (c) -2/7 (d) 0

If f(x)=log((1+x)/(1-x))a n dg(x)=((3x+x^3)/(1+3x^2)) , then f(g(x)) is equal to (a) f(3x) (b) {f(x)}^3 (c) 3f(x) (d) -f(x)

If f(x) = 1/2 (3^x + 3^(-x)), g(x) = 1/2 (3^x - 3^(-x)) , then f(x) \ g(y)+f(y) \ g(x)=