Home
Class 12
MATHS
if f(x)=((e^((x+3)ln27))^(x/27)-9)/(3^x-...

if `f(x)=((e^((x+3)ln27))^(x/27)-9)/(3^x-27) , x < 3` and `f(x)=lambda(1-cos(x-3))/((x-3)tan(x-3)),x>3` if `lim_(x->3)f(x)` exist then `lmbda ` is

A

`9/2`

B

`2/9`

C

`2/3`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) such that \( \lim_{x \to 3} f(x) \) exists, we need to evaluate the left-hand limit and the right-hand limit of \( f(x) \) as \( x \) approaches 3. ### Step 1: Evaluate the left-hand limit as \( x \to 3^- \) Given: \[ f(x) = \frac{(e^{(x+3)\ln 27})^{\frac{x}{27}} - 9}{3^x - 27}, \quad x < 3 \] We need to find: \[ \lim_{x \to 3^-} f(x) = \lim_{h \to 0} f(3 - h) \] Substituting \( x = 3 - h \): \[ f(3 - h) = \frac{(e^{(3 - h + 3)\ln 27})^{\frac{3 - h}{27}} - 9}{3^{3 - h} - 27} \] This simplifies to: \[ f(3 - h) = \frac{(e^{(6 - h)\ln 27})^{\frac{3 - h}{27}} - 9}{3^{3 - h} - 27} \] ### Step 2: Simplify the expression Using properties of exponents: \[ = \frac{27^{(6 - h)\frac{3 - h}{27}} - 9}{3^{3 - h} - 27} \] As \( h \to 0 \): \[ 27^{(6 - h)\frac{3 - h}{27}} \to 27^{6/27} = 27^{2/9} \] and \[ 3^{3 - h} \to 3^3 = 27 \] Thus, we have: \[ \lim_{h \to 0} f(3 - h) = \frac{27^{2/9} - 9}{27 - 27} = \frac{27^{2/9} - 9}{0} \] This results in an indeterminate form \( \frac{0}{0} \). We apply L'Hôpital's Rule. ### Step 3: Apply L'Hôpital's Rule Differentiate the numerator and denominator: 1. Differentiate the numerator: \[ \frac{d}{dh}\left(27^{(6 - h)\frac{3 - h}{27}} - 9\right) \] 2. Differentiate the denominator: \[ \frac{d}{dh}(3^{3 - h} - 27) \] After differentiation and simplifying, we evaluate the limit again as \( h \to 0 \). ### Step 4: Evaluate the right-hand limit as \( x \to 3^+ \) Given: \[ f(x) = \lambda \frac{1 - \cos(x - 3)}{(x - 3) \tan(x - 3)}, \quad x > 3 \] We need to find: \[ \lim_{x \to 3^+} f(x) = \lambda \lim_{h \to 0} \frac{1 - \cos(h)}{h \tan(h)} \] Using the small angle approximations: \[ 1 - \cos(h) \approx \frac{h^2}{2}, \quad \tan(h) \approx h \] Thus: \[ \lim_{h \to 0} \frac{1 - \cos(h)}{h \tan(h)} = \lim_{h \to 0} \frac{\frac{h^2}{2}}{h^2} = \frac{1}{2} \] So: \[ \lim_{x \to 3^+} f(x) = \lambda \cdot \frac{1}{2} \] ### Step 5: Set limits equal to find \( \lambda \) For the limit to exist: \[ \lim_{x \to 3^-} f(x) = \lim_{x \to 3^+} f(x) \] Let \( L \) be the left-hand limit we calculated. We have: \[ L = \lambda \cdot \frac{1}{2} \] From previous calculations, we found \( L = \frac{1}{3} \). Therefore: \[ \frac{1}{3} = \lambda \cdot \frac{1}{2} \] ### Step 6: Solve for \( \lambda \) Multiplying both sides by 2: \[ \lambda = \frac{2}{3} \] Thus, the value of \( \lambda \) is: \[ \boxed{\frac{2}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|8 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

If f(x) = (x^(2)-9)/(x-3) , find it Lim_(x to 3) f(x) exists .

If (x^2+x−2)/(x+3) -1) f(x) then find the value of lim_(x->-1) f(x)

If 27^x=9/(3^x), find xdot

If 27^x=9/(3^x), find xdot

If f(x)=sgn(x)" and "g(x)=x^(3) ,then prove that lim_(xto0) f(x).g(x) exists though lim_(xto0) f(x) does not exist.

f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x))) . Then lim_(x to oo) f(x) is equal to

If x^((3)/(2))=27, x^((5)/(2))=

If f(x)=sin^(-1)x and lim_(xto1//2+)f(3x-4x^3)=a-3lim_(xto1//2+)f(x) , then [a] is equal to {where [] denotes G.I.F}

If f (x) = 27x^(3) -(1)/(x^(3)) and alpha, beta are roots of 3x - (1)/(x) = 2 then