Home
Class 12
MATHS
lim(x->oo)(e^(11x)-7x)^(1/(3x))...

`lim_(x->oo)(e^(11x)-7x)^(1/(3x))`

A

`(11)/(3)`

B

`(3)/(11)`

C

`e^((3)/(11))`

D

`e ^((11)/(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} (e^{11x} - 7x)^{\frac{1}{3x}} \), we will follow these steps: ### Step 1: Identify the limit We start by letting: \[ L = \lim_{x \to \infty} (e^{11x} - 7x)^{\frac{1}{3x}} \] ### Step 2: Take the natural logarithm Taking the natural logarithm of both sides: \[ \ln L = \lim_{x \to \infty} \frac{1}{3x} \ln(e^{11x} - 7x) \] ### Step 3: Analyze the logarithm As \( x \to \infty \), \( e^{11x} \) grows much faster than \( 7x \). Thus, we can approximate: \[ \ln(e^{11x} - 7x) \approx \ln(e^{11x}) = 11x \] So we rewrite the limit: \[ \ln L = \lim_{x \to \infty} \frac{1}{3x} \cdot 11x = \lim_{x \to \infty} \frac{11}{3} = \frac{11}{3} \] ### Step 4: Exponentiate to find \( L \) Now, we exponentiate both sides to solve for \( L \): \[ L = e^{\frac{11}{3}} \] ### Conclusion Thus, the limit is: \[ \lim_{x \to \infty} (e^{11x} - 7x)^{\frac{1}{3x}} = e^{\frac{11}{3}} \] ### Final Answer The correct answer is \( e^{\frac{11}{3}} \). ---
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|8 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

lim_(x->oo)n^2(x^(1/n)-x^(1/((n+1)))),x >0 , is equal to (a)0 (b) e^x (c) (log)_e x (d) none of these

lim_(x->oo)(30+4sqrt(x)+7x^(1/3))/(2+sqrt(4x-7)+(6x-2)^(1/3) equals a)15 (b) 2 (c) 3/2 (d) 0

lim_(x->oo)(1-x+x.e^(1/n))^n

lim_(x->oo)sin(1/x)/(1/x)

lim_(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx) is equal to

lim_(x->0)(e^(5x) - 1)/(3x)

Solve lim_(x->oo)(e^x-e^-x)/(e^x-e^-x)

If lim_(x->oo)((1+a^3)+8e^(1/ x))/(1+(1-b^3)e^(1/ x))=2, then there exists

lim_(x->oo ){(e^x+pi^x)^(1/x)}= where {.} denotes the fractional part of x is equal to

lim_(x rarr oo)e^(-x)x^(2)