Home
Class 12
MATHS
Let f (x) =3x ^(10) -7x ^(8) +5x^(6) -21...

Let `f (x) =3x ^(10) -7x ^(8) +5x^(6) -21 x ^(3) +3x ^(2) -7`
`265 (lim _(htoo) (h ^(4) +3h^(2))/((f(1-h) -f (1))sin5h))=`

A

1

B

2

C

3

D

`-3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we will follow a systematic approach. **Given:** \[ f(x) = 3x^{10} - 7x^{8} + 5x^{6} - 21x^{3} + 3x^{2} - 7 \] We need to evaluate: \[ 265 \lim_{h \to 0} \frac{h^{4} + 3h^{2}}{(f(1-h) - f(1)) \sin(5h)} \] ### Step 1: Simplify the limit expression First, we can factor \( h^2 \) out of the numerator: \[ \lim_{h \to 0} \frac{h^2(h^2 + 3)}{(f(1-h) - f(1)) \sin(5h)} \] ### Step 2: Rewrite the limit We can rewrite the limit as: \[ 265 \lim_{h \to 0} \frac{h^2 + 3}{(f(1-h) - f(1)) \frac{\sin(5h)}{h^2}} \] ### Step 3: Apply L'Hôpital's Rule Since both the numerator and denominator approach 0 as \( h \to 0 \), we can apply L'Hôpital's Rule. However, we will first analyze \( f(1-h) - f(1) \). ### Step 4: Find \( f(1) \) Calculate \( f(1) \): \[ f(1) = 3(1)^{10} - 7(1)^{8} + 5(1)^{6} - 21(1)^{3} + 3(1)^{2} - 7 \] \[ = 3 - 7 + 5 - 21 + 3 - 7 = -34 \] ### Step 5: Find \( f(1-h) \) Next, we need to find \( f(1-h) \): \[ f(1-h) = 3(1-h)^{10} - 7(1-h)^{8} + 5(1-h)^{6} - 21(1-h)^{3} + 3(1-h)^{2} - 7 \] ### Step 6: Use Taylor Expansion Using Taylor expansion around \( h = 0 \): \[ f(1-h) \approx f(1) - f'(1)h + O(h^2) \] where \( f'(x) \) is the derivative of \( f(x) \). ### Step 7: Find \( f'(x) \) Differentiate \( f(x) \): \[ f'(x) = 30x^{9} - 56x^{7} + 30x^{5} - 63x^{2} + 6 \] ### Step 8: Calculate \( f'(1) \) Now calculate \( f'(1) \): \[ f'(1) = 30(1)^{9} - 56(1)^{7} + 30(1)^{5} - 63(1)^{2} + 6 \] \[ = 30 - 56 + 30 - 63 + 6 = -53 \] ### Step 9: Substitute back into the limit Now we can substitute back into our limit: \[ f(1-h) - f(1) \approx -(-53)h = 53h \] Thus, the limit becomes: \[ 265 \lim_{h \to 0} \frac{h^2 + 3}{53h \sin(5h)} \] ### Step 10: Simplify the limit Now, we can simplify: \[ = 265 \lim_{h \to 0} \frac{h^2 + 3}{53h} \cdot \frac{1}{\sin(5h)} \] Using the fact that \( \lim_{h \to 0} \frac{\sin(5h)}{5h} = 1 \): \[ = 265 \cdot \frac{1}{53} \cdot \frac{1}{5} \cdot 3 \] ### Step 11: Final Calculation Calculating the final value: \[ = \frac{265 \cdot 3}{53 \cdot 5} = \frac{795}{265} = 3 \] ### Final Answer Thus, the value of the limit is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|8 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7 , then the value of lim_(h->0) (f(1-h)-f(1))/(h^3+3h)

If f(x)=7x^(4)-2x^(3)-8x-5 find f(-1)

If f(x) = 2 x^3 + 7x - 5 then f^(-1) (4) is :

Let f (x) be a polynomial satisfying lim _(x to oo) (x ^(4) f (x))/( x ^(8) +1)=3 f (2) =5, f(3) =10, f (-1)=2, f (-6)=37 The value of lim _(x to -6) (f (x) -x ^(2) -1)/(3 (x+6)) equals to:

Let f (x) be a polynomial satisfying lim _(x to oo) (x ^(4) f (x))/( x ^(8) +1)=3 f (2) =5, f(3) =10, f (-1)=2, f (-6)=37 The value of lim _(x to -6) (f (x) -x ^(2) -1)/(3 (x+6)) equals to:

Let f(x)=(5x+6)/(7x+9) then, f^-1(x) =?

If f (x) =2x ^(2) -5x +7, what is the value of f (8) -f (3) ?

If f(x)= x^2 , then (f(x+h)-f(x))/(h) =

Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g be inverse function of f and h (x)= (a+bx ^(3//2))/(x ^(5//4)),h '(5)=0, then (a^(2))/(5b^(2) g'((-7)/(6)))=

If f(x)=(2x)/(5)+(7)/(3), f^(-1)(x)=