Home
Class 12
MATHS
lim (x to ((1)/(sqrt2))^(+))(cos ^(-1) (...

`lim _(x to ((1)/(sqrt2))^(+))(cos ^(-1) (2x sqrt(1- x ^(2))))/((x-(1)/(sqrt2)))- lim _(x to ((1)/(sqrt2))^(-))(cos ^(-1) (2x sqrt(1-x ^(2))))/((x- (1)/(sqrt2)))=`

A

`sqrt2`

B

`2sqrt2`

C

`4 sqrt2`

D

`0`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|8 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

f(x)=cos^(-1)(x^(2)/sqrt(1+x^(2)))

lim_(x->1/sqrt2 ^+) cos^- 1(2xsqrt(1-x^2))/((x-1/sqrt2))-lim_(x->1/sqrt2^-) cos^- 1(2xsqrt(1-x^2))/((x-1/sqrt2))

Evaluate the following limit: (lim)_(x->1/(sqrt(2)))(cos^(-1)(2xsqrt(1-x^2)))/(x-1/(sqrt(2)))

lim_(x to 0) (2^(x) - 1)/(sqrt(1 + x) - 1) =

Evaluate: lim_(xrarr1) (1-sqrt(x))/((cos^(-1)sqrt(x))^(2))

If x in((1)/(sqrt2)1). Differentiate tan^(-1)(sqrt(1-x^(2))/(x)) w.r. t. cos^(-1)(2xsqrt(1-x^(2))).

lim_(x to 0) (1 - cos x)/(x sqrt(x^(2))

If (1)/(sqrt2) lt x lt 1 , then prove that cos^(-1) x + cos^(-1) ((x + sqrt(1 - x^(2)))/(sqrt2)) = (pi)/(4)

Evaluate : lim_(x to oo) sqrt(x^(2)+x +1) - sqrt(x^(2)+1)

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))