Home
Class 12
MATHS
If m and n are positive integers, then l...

If m and n are positive integers, then `lim_(xto0) ((cos x )^(1//m) -(cos x )^(1//n))/(x ^(2))` equals to:

A

`m-n`

B

`1/n-1/m`

C

`(n-n)/(2mn)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|8 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

If and n are positive integers, then lim_(x->0)((cosx)^(1/ m)-(cosx)^(1/ n))/(x^2) equal to :

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

Slove lim_(xto0)((1+x)^(1//x)-e)/x

lim_(xto0)((e^(x)-1)/x)^(1//x)

The value of lim _(xto0) (cos (sin x )- cos x)/(x ^(4)) is equal to :

Evaluate lim_(xto0) ((1+x)^(1//x)-e+(1)/(2)es)/(x^(2)) .

Evaluate lim_(xto0) (1-cos2x)/x^(2)

If m and n are positive integers, then prove that the coefficients of x^(m) " and " x^(n) are equal in the expansion of (1+x)^(m+n)

lim_(x -0) (1 - cos 4x)/(x^(2)) is equal to

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)