Home
Class 12
MATHS
The value of ordered pair (a,b) such tha...

The value of ordered pair (a,b) such that `lim _(xto0) (x (1+ a cos x ) -b sin x )/( x ^(3))=1,` is:

A

`(-(5)/(2),-(3)/(2))`

B

`((5)/(2), (3)/(2))`

C

`(-(5)/(2 ),(3 )/(2))`

D

`((5 )/(2), -(3)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to find the ordered pair \((a, b)\) such that: \[ \lim_{x \to 0} \frac{x(1 + a \cos x - b \sin x)}{x^3} = 1 \] ### Step-by-Step Solution: 1. **Rewrite the limit expression**: We start with the limit expression: \[ \lim_{x \to 0} \frac{x(1 + a \cos x - b \sin x)}{x^3} \] This can be simplified to: \[ \lim_{x \to 0} \frac{1 + a \cos x - b \sin x}{x^2} \] 2. **Expand \(\cos x\) and \(\sin x\)**: Using Taylor series expansions around \(x = 0\): \[ \cos x \approx 1 - \frac{x^2}{2} + O(x^4) \] \[ \sin x \approx x - \frac{x^3}{6} + O(x^5) \] Substituting these expansions into the limit gives: \[ 1 + a\left(1 - \frac{x^2}{2}\right) - b\left(x - \frac{x^3}{6}\right) \] This simplifies to: \[ 1 + a - b x - \frac{a x^2}{2} + \frac{b x^3}{6} \] 3. **Combine terms**: Now we can rewrite the expression: \[ \lim_{x \to 0} \frac{(1 + a) - b x - \frac{a x^2}{2} + \frac{b x^3}{6}}{x^2} \] 4. **Separate the limit**: As \(x \to 0\), the term \((1 + a)\) must equal \(0\) for the limit to exist (otherwise, the limit would approach infinity). Thus: \[ 1 + a - b = 0 \quad \text{(Equation 1)} \] 5. **Evaluate the remaining terms**: The remaining terms give: \[ \lim_{x \to 0} \left(-\frac{a}{2} + \frac{b}{6} \right) = 1 \] This leads to: \[ -\frac{a}{2} + \frac{b}{6} = 1 \quad \text{(Equation 2)} \] 6. **Solve the equations**: From Equation 1: \[ a - b = -1 \implies b = a + 1 \] Substitute \(b\) in Equation 2: \[ -\frac{a}{2} + \frac{a + 1}{6} = 1 \] Multiply through by 6 to eliminate the fractions: \[ -3a + (a + 1) = 6 \] Simplifying gives: \[ -2a + 1 = 6 \implies -2a = 5 \implies a = -\frac{5}{2} \] Now substituting \(a\) back to find \(b\): \[ b = -\frac{5}{2} + 1 = -\frac{3}{2} \] 7. **Final ordered pair**: Thus, the ordered pair \((a, b)\) is: \[ \left(-\frac{5}{2}, -\frac{3}{2}\right) \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|8 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

lim _(xto0) ((cos x -secx )/(x ^(2) (x+1)))=

Find the values of a and b in order that lim_(xto0) (x(1+acosx)-bsinx)/(x^(3))=1.

If lim _(xto0) (a cos x)/(x^2) + (b)/(x ^(2))=1/3, then b-a=

The value of lim _(xto0) (cos (sin x )- cos x)/(x ^(4)) is equal to :

Find the values of a and b in order that lim_(x->0) (x(1+a cos x)-b sinx)/x^3=1 [using L' Hospital' srule].

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate lim_(xto0)x^(3)"cos"2/x .

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)

Evaluate the following limits : Lim_(xto0) ((tan x- sin x)/(x^(3)))

lim_(xto0)((a+x)^2sin(a+x)-a^2sina)/x